Task 4: Textual Entailment in Statute Law

COLIEE 2024 Overview @ JURISIN 2024

狩野芳伸Yoshinobu Kano静岡大学情報学部行動情報学科

COLIEE Competition

- Competition for Legal Information Extraction and Entailment (COLIEE)
 - I am one of the organizers
 - COLIEE 2013, 2014, 2015, 2016, 2018, 2020, 2022, 2024 in JURISIN
 - COLIEE 2017, 2019, 2021, 2023 in ICAIL
- Case Law tasks (from 2018)
 - Canadian Federal Court database
- Statute Law tasks
 - Japanese Legal bar exam
 - Human applicants should pass the Legal Bar Exam to be a lawyer in Japan

Example of Statute Task

Question	A special provision that releases warranty can be made, but in that situation, when there are rights that the seller establishes on his/her own for a third party, the seller is not released of warranty.
Related Article (Task IR)	(Special Agreement Disclaiming Warranty) Article 572 Even if the seller makes a special agreement to the effect that the seller will not provide the warranties set forth from Article 560 through to the preceding Article, the seller may not be released from that responsibility with respect to any fact that the seller knew but did not disclose, and with respect to any right that the seller himself/herself created for or assigned to a third party.
Label (Task TE/QA)	Yes

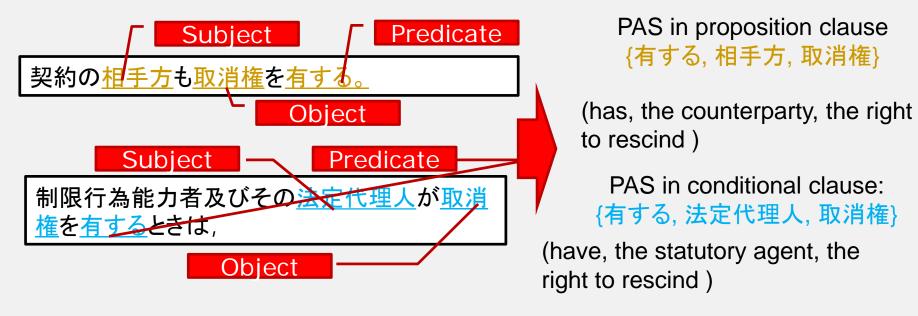
COLIEE 2024 Task 4 Dataset

- Dataset same as Task 3
- COLIEE 2024 training data
 - 1097 queries
 - built from the bar exam (short answer test) civil code part
 - published in 2006-2023
 - XML files, each corresponds to one year's publication
- Japanese Civil Law Articles as knowledge base
- Both in original Japanese version and manually translated English version
- COLIEE 2024 test data
 - 109 queries from the latest bar exam of 2023
- Each team can submit up to three runs for each task
 - We asked to submit past formal run configurations as well
 - 2021 (R02), 2020 (R01), 2019 (H30)

Overview: Historical Development

- Linguistic structures specific to legal docs
 - ~COLIEE 2019: classic NLP
- Insufficient data size (pretrain/finetune)
 - ~COLIEE 2020: deep language model by transfer learning (pretraining)
 - COLIEE 2022: ensemble of different system outputs
 - COLIEE 2023~: LLM, generative AI
- General knowledge, evidence/explanations
 - ???: common sense, relationships, logic, etc.
 - COLIEE 2025 new task/evaluation planned!

Clauses and Predicate Arguments


H24-2-1

Proposition Clause

Conditional Clause

制限行為能力者のした契約について、制限行為能力者及びその法定代理人が取消権を有するときは、契約の相手方も取消権を有する。

An act which may be rescinded on the grounds of the limited capacity to act of the person who performed such act may be rescinded only by the person whose capacity to act is limited, or its agent, successor, or a person who has the authority to give consent.

Overview: Historical Development

- Linguistic structures specific to legal docs
 - ~COLIEE 2019: classic NLP
- Insufficient data size (pretrain/finetune)
 - COLIEE 2020: deep language model by transfer learning (pretraining)
 - COLIEE 2022: ensemble of different system outputs
 - COLIEE 2023~: LLM, generative AI
- General knowledge, evidence/explanations
 - ???: common sense, relationships, logic, etc.
 - COLIEE 2025 new task/evaluation planned!

Sponsored-by-Alberta-Machine-Intelligence-Institute-(AMII)

<u>University-of-Alberta</u>

<u>National-Institute-of-Informatics-(NII)</u>

<u> Team name: CAPTAIN</u>⊬

Affiliation: <u>Japan Advanced Institute of Science and </u>

Technology → .·Japan· +

Sincere thanks for your contribution to the growing community of research scholars who have invested their energy and talent into pushing the boundaries of research

	Team	Formal Run		Past Formal Runs		
		# Correct	R05	R02	R01	H30
Doculto	BaseLine (Yes to all)	60	0.5505	0.5309	0.5315	0.5143
Results	# Correct /# Total		60/109	43/81	59/111	36/70
	CAPTAIN2	90	0.8257	0.7901	0.7568	0.8429
	JNLP1 *	89	0.8165	0.7901	0.6937	0.7429
Total 8 teams (24	UA_slack	87	0.7982	0.7407	0.7117	0.7429
runs)	UA_encoder_decoder	87	0.7982	0.8395	0.7207	0.7571
•	CAPTAIN1	86	0.7890	0.8148	0.7748	0.8286
<u>CAPTAIN2</u> winner!	CAPTAIN3	86	0.7890	0.8395	0.7207	0.7286
LLM (flan-T5) with	JNLP2 *	86	0.7890	0.8272	0.7297	0.7857
data augmentation	UA_gpt	85	0.7798	0.7901	0.6847	0.7571
and heuristic rules,	AMHR.ensembleA50	84	0.7706	0.8148	0.3784	0.6571
fine-tune.	AMHR.single	84	0.7706	0.7901	0.3874	0.6714
	HI1	82	0.7523	0.7284	0.6667	0.7000
JNLP 2nd	NOWJ.pandap46 $$	82	0.7523	N/A	N/A	N/A
different LLMs	AMHR.ensembleA0	80	0.7339	0.7778	0.4234	0.7000
(Wqen (their original	JNLP3 *	80	0.7339	0.7901	0.6126	0.6571
model), Mistral, Flan	NOWJ.flant5-panda $*$	80	0.7339	N/A	N/A	N/A
Alpaca, and FlanT5)	NOWJ.bagging $*$	78	0.7156	N/A	N/A	N/A
ensemble the results	OVGU1 +	77	0.7064	0.7531	0.6937	0.6714
with majority voting,	KIS2 +	76	0.6972	0.6543	0.6036	0.6429
took the top-1	OVGU3 +	76	0.6972	0.7654	0.6306	0.7000
prompt from Flan-	OVGU2 +	70	0.6422	0.6790	0.6396	0.6000
Alpaca	KIS1	67	0.6147	0.6420	0.6847	0.6286
	HI3	64	0.5872	0.6296	0.6306	0.6000
	HI2	63	0.5780	0.7531	0.6937	0.7143
	KIS3	62	0.5688	0.5926	0.6306	0.6429

		Team	Formal Run Past Formal Runs			Runs	
		ream	# Correct	R05	R02	R01	H30
	Results	BaseLine (Yes to all)	60	0.5505	0.5309	0.5315	0.5143
	Results	# Correct /# Total		60/109	43/81	59/111	36/70
		CAPTAIN2	90	0.8257	0.7901	0.7568	0.8429
		JNLP1 *	89	0.8165	0.7901	0.6937	0.7429
	UA_stack 3rd	UA_slack	87	0.7982	0.7407	0.7117	0.7429
	used zero-shot learning	$UA_encoder_decoder$	87	0.7982	0.8395	0.7207	0.7571
	on google/flant5-xxl	CAPTAIN1	86	0.7890	0.8148	0.7748	0.8286
	with PromptSource8 fo	CAPTAIN3	86	0.7890	0.8395	0.7207	0.7286
	finding potential good	JNLP2 *	86	0.7890	0.8272	0.7297	0.7857
	prompts, added	UA_gpt	85	0.7798	0.7901	0.6847	0.7571
	positive and one	AMHR.ensembleA50	84	0.7706	0.8148	0.3784	0.6571
	negative example,	AMHR.single	84	0.7706	0.7901	0.3874	0.6714
	chose the top 3	HI1	82	0.7523	0.7284	0.6667	0.7000
	prompts, finally zero-	NOWJ.pandap46 *	82	0.7523	N/A	N/A	N/A
	shot inference with all three prompts and	AMHR.ensembleA0	80	0.7339	0.7778	0.4234	0.7000
	voting between them.	JNLP3 *	80	0.7339	0.7901	0.6126	0.6571
		NOWJ.flant5-panda $*$	80	0.7339	N/A	N/A	N/A
•	* indicates runs using	NOWJ.bagging *	78	0.7156	N/A	N/A	N/A
	not fully disclosed	OVGU1 +	77	0.7064	0.7531	0.6937	0.6714
	models	KIS2 +	76	0.6972	0.6543	0.6036	0.6429
	+ indicates runs with	OVGU3 +	76	0.6972	0.7654	0.6306	0.7000
	preprocessing by such	OVGU2 +	70	0.6422	0.6790	0.6396	0.6000
	models	KIS1	67	0.6147	0.6420	0.6847	0.6286
		HI3	64	0.5872	0.6296	0.6306	0.6000
		HI2	63	0.5780	0.7531	0.6937	0.7143
		KIS3	62	0.5688	0.5926	0.6306	0.6429

Task 4 Results (Textual
Comparison with previous ormal run settings training/eval)
2021 (R02), 2020 (R01), 2019 (H30)
asked to apply with this year's same system
Different year shows quite different charcteristics due to he datasets
any way to get more stable results?

60/109 43/81 59/111 36/70 0.8257 | 0.7901 | 0.7568 | 0.8429 0.8165 | 0.7901 | 0.6937 | 0.7429 0.7982 | 0.7407 | 0.7117 | 0.7429

R02

0.5505 | 0.5309 | 0.5315 | 0.5143

Run

R05

$0.7982 \mid 0.8395 \mid 0.7207 \mid 0.7571$ 0.7890 | 0.8148 | 0.7748 | 0.8286 0.7890 | 0.8395 | 0.7207 | 0.7286 $0.7890 \mid 0.8272 \mid 0.7297 \mid 0.7857$ 0.7798 | 0.7901 | 0.6847 | 0.7571 0.7706 | 0.8148 | 0.3784 | 0.6571 0.7706 | 0.7901 | 0.3874 | 0.6714 0.7523 | 0.7284 | 0.6667 | 0.7000 0.7523 N/A N/A 0.7339 | 0.7778 | 0.4234 | 0.7000 0.7339 | 0.7901 | 0.6126 | 0.6571 0.7339 N/A N/A 0.7156 N/A N/A 0.7064 | 0.7531 | 0.6937 | 0.6714 0.6972 | 0.6543 | 0.6036 | 0.6429

0.6972 | 0.7654 | 0.6306 | 0.7000 0.6422 | 0.6790 | 0.6396 | 0.6000 0.6147 | 0.6420 | 0.6847 | 0.6286 0.5872 | 0.6296 | 0.6306 | 0.6000 0.5780 | 0.7531 | 0.6937 | 0.7143 0.5688 | 0.5926 | 0.6306 | 0.6429

N/A

N/A

N/A

Past Formal Runs

R01

H30

Open Questions and Future Plans: What are the LLMs doing?

- LLMs could answer quite accurately
 - evidences are also fine in most cases
 - LLMs (implicitly) includes answers similar to our gold data in their training?
 - Humans can perform "symbolic processings" "logical calculations"
 - but LLMs should not perform "logical calculation" rather "compositions"
 - Needs precise analysis regarding what sort of issues are actually solved
- Can LLMs "logically" think?
- "Explainable AI" required in two meanings
 - explanation for humans
 - explanation of the internal process

Difficult Examples

- Temporal expressions, coreferences
 - If person A donates a house that he/she is renting to person C with a provision for the payment of rent at the end of every month to person B midway through the month, if there is a special agreement between person A and person B, the rent for the month will be distributed between person A and person B in proportion to the number of the days.
- Document structure, references, Negation (sometimes implicit in terms), Acronyms (domain dependent, vague), ···

Overview: Historical Development

- Linguistic structures specific to legal docs
 - ~COLIEE 2019: classic NLP
- Insufficient data size (pretrain/finetune)
 - COLIEE 2020: deep language model by transfer learning (pretraining)
 - COLIEE 2022: ensemble of different system outputs
 - COLIEE 2023: LLM?
- General knowledge, evidence/explanations
 - ???: common sense, relationships, logic, etc.
 - COLIEE 2024 new task/evaluation planned!

Look forward to see new participants in COLIEE 2025!