NLL2FR 2025

December 9, 2025 | Torino, Italy

Edited by: Ken Satoh, Georg Borges, Hannes Westermann, and May Myo Zin

Proceedings of the International Workshop
on Translating Natural Legal Language
into Formal Representations

(NLL2FR 2025)

in association with

the 38th International Conference on Legal Knowledge and
Information Systems (JURIX 2025)

NLL2FR 2025 Co-Chairs

Ken Satoh, Center for Juris-Informatics, Japan
Georg Borges, Saarland University, Germany
Hannes Westermann, Maastricht University, The Netherlands
May Myo Zin, Center for Juris-Informatics, Japan

December 9, 2025

Preface

This volume contains the papers presented at NLL2FR 2025: The International
Workshop on Translating Natural Legal Language into Formal Representation,
held on December 9, 2025, in association with the 38th International Conference
on Legal Knowledge and Information Systems (JURIX 2025).

As automation and Al systems become increasingly integrated into legal prac-
tice, the need to bridge human-readable and machine-executable legal informa-
tion grows ever more urgent. Laws, regulations, contracts, and case descriptions
are typically written for human readers, who rely on shared background knowl-
edge, professional experience, and contextual understanding. Unlike humans, au-
tomated systems such as compliance-checking tools and legal decision-support
applications require these legal texts to be rewritten in a clear, structured, and
formally precise way so they can be interpreted and processed automatically.
The NLL2FR workshop is dedicated to developing and evaluating methods for
translating natural legal language into such representations, helping to bridge
the gap between human-centred legal texts and machine-executable legal knowl-
edge. It encourages contributions that explore methodologies, tools, theoretical
frameworks, and practical pipelines for analyzing, structuring, and formalizing
legal texts. The goal is to foster an exchange of ideas among communities that
address different aspects of the translation problem, from linguistic analysis to
formal modeling and executable representations.

For the 2025 edition, we received 16 submissions, each reviewed by three
reviewers, and accepted 14 papers (12 long and 2 short) for presentation and
discussion. These contributions collectively reflect the breadth and growing ma-
turity of the field. They include work on automated legal text annotation and
information extraction, argument modeling and factor identification, the for-
malization and structuring of legal texts, legal NER, the development of le-
gal ontologies, and integrated frameworks that link natural-language norms to
machine-executable representations. The approaches range from carefully en-
gineered rule-based systems and logic-based formalisms to methods leveraging
large language models (LLMs). Many papers combine both paradigms—often in
complementary or comparative ways—to convert natural-language legal sources
into precise, operational representations. Together, they highlight the progress
made and the challenges that remain in understanding and structuring the com-
plex language of the law for computational use and provide a valuable foundation
for future research.

We extend our sincere thanks to all authors for their submissions and to the
members of the Program Committee for their thorough evaluations, insightful
comments, and unwavering support of the review process. We also thank the
JURIX 2025 organizers for their support in hosting the workshop.

December 9, 2025 Ken Satoh
Georg Borges

Hannes Westermann

May Myo Zin

Table of Contents

Error Analysis in LLM-based Factor Identification and Discovery
Wachara Fungwacharakorn, May Myo Zin and Ken Satoh

From LegalRuleML to Defeasible Deontic Logic.......................
Guido Governatori, Monica Palmirani and Muhammad Asif

Catch the Platypus! Negated Conditionals as a Challenge for Machine

Translation from Natural Language into Logical Formalisms using

Large Language Models. e
Bianca Steffes and Diogo Sasdelli

When Legal Articles Resist Formalisation
Ludi van Leeuwen, Tadeusz Jerzy Zbiegien and Cor Steging

Legal NER: Evaluating the impact of LLM-Generated Annotations on
NER Performance for Administrative Decisions
Harry Nan, Samaneh Khoshrou and Johan Wolswinkel

Structured Four-Stage Legal Translation: From Natural-Language

Traffic Rules to PROLOG e
May Myo Zin, Wachara Fungwacharakorn, Ken Satoh and Katsumi
Nitta

A Rule-Based Method for the Annotation of Mandarin Medical
Litigation Judgments Using Regular Expressions
Sieh-Chuen Huang and Hsuan-Lei Shao

Using LLMs to Model Arguments in U.S.”Supreme Court Briefs:
Preliminary Report
Heng Zheng, Dexter Williams and Bertram Luddscher

Legal Texts to Legal Data: LLM-Based Attribute Extraction from

Court Verdicts.ot
Tvana Kvapilikovd, Jan Cerny, Vojtech Pour, Tomas Knap, Kldra Ben-
dova, Jaromir Savelka and Jakub Drapal

Can Legislation Be Made Machine-Readable in PROLEG? An

Investigation of GDPR Article 6 i
May Myo Zin, Sabine Wehnert, Yuntao Kong, Ha Thanh Nguyen,
Wachara Fungwacharakorn, Jieying Xue, Michal Araszkiewicz, Randy
Goebel, Ken Satoh and Nguyen Le Minh

Using LLMs to Create Legal Ontologies for Traffic Rule Compliance.
Galileo Sartor, Thiago Raulino Dal Pont, Enrico Francesconi and Adam
Wyner

ii

Plans and Diversionst 144
Galileo Sartor, Guido Governatori, Giuseppe Pisano, Antonino Rotolo
and Adam Wyner

Towards Translating Natural Language Normative Text into a Digital
Twin of Administrative Law i i 157
Florian Schnitzhofer and Christoph Schuetz

Testing Modelling Fitness of Normative Specification Languages for LLMs 164
Giovanni Sileno and Andrea Marino

iii

Program Committee

Akira Shimazu
Adrian Paschke
Michal Araszkiewicz
Adam Wyner
Satoshi Tojo
Le-Minh Nguyen
Anelia Kurteva

Vu Tran

Wachara Fungwacharakorn

Guido Governatori
Katsumi Nitta
Yuntao Kong
Davide Liga

Aye Aye Mar

Su Myat Noe
Makoto Nakamura
Maria Navas-Loro
Ha-Thanh Nguyen
Minh-Phuong Nguyen
Livio Robaldo
Diogo Sasdelli
Sabine Wehnert
Xue Jieying

Japan Advanced Institute of Science and Technology
Freie Universitat Berlin

Jagiellonian University

Swansea University

Asia University

Japan Advanced Institute of Science and Technology
University of Birmingham

Japan Advanced Institute of Science and Technology
Cener for Juris-Informatics

Central Queensland University

Center for Juris-Informatics

Center for Juris-Informatics

University of Luxembourg

Japan Advanced Institute of Science and Technology
National Institue of Informatics

Niigata Institute of Technology

Universidad Politécnica de Madrid

National Institute of Informatics

Japan Advanced Institute of Science and Technology
Swansea University

University for Continuing Education Krems

Otto von Guericke University Magdeburg

Center for Juris-Informatics

iv

Error Analysis in LLM-based Factor
Identification and Discovery

Wachara Fungwacharakorn?! [0000—0001-9294=3118] ‘\[ay Myo
7in![0000-0003-1315-7704] 5114 Ken Satoh![0000-0002-9309—4602]

Center of Juris-Informatics, ROIS-DS, Tokyo, Japan
{wacharaf, maymyozin, ksatoh}@nii.ac.jp

Abstract. Factors are fundamental features for representing legal cases
computationally, and Al and Law researchers have long explored the
use of machine learning and large language models (LLMs) for factor
extraction. This paper investigates errors in two key LLM-based factor
extraction tasks: factor identification and factor discovery. We report
experimental results across two legal domains — trade secrets and credit
card applications — using two LLMs, GPT-40 and GEMINI 2.0 FLASH
LITE. The results show that context-dependent factors and short case
descriptions often lead to errors in factor identification, while overlapping
factors and long case descriptions tend to cause errors in factor discovery.
These findings suggest strategies such as adapting extraction methods to
factor characteristics and applying legal case summarization techniques
in factor extraction to mitigate errors.

Keywords: Factor - Legal Reasoning - Large Language Models

1 Introduction

Factors are fundamental components in legal analysis and computational legal
reasoning [10]. Each factor captures factual patterns that tend to strengthen or
weaken a position in a legal dispute [2]. For example, in the domain of trade se-
cret law, factual patterns such as whether the trade secret has sufficient security
measures and whether the trade secret is easy to reverse engineer are consid-
ered factors that influence the decision [11]. In AT and Law, factors are used to
model case-based legal reasoning, such as HYPO [11], CATO [1], and models of
precedential constraint [9]. In those models, reasoning proceeds by identifying
similarities and differences between factor sets as representations to those factual
situations of the cases.

As legal AI systems advance, machine learning and large language models
(LLMs) have emerged as promising tools for automating factor identification [4,
7,12] as well as factor discovery [8]. Traditionally, factor identification and dis-
covery tasks are performed by trained legal professionals to identify and discover
which factual elements are relevant to a particular outcome, as discussed in early
case-based legal reasoning systems [1]. However, the reliability of LLM-based
factor identification and discovery remains understudied, particularly regarding

how characteristics of the factors themselves influence model performance. Un-
derstanding these error patterns is critical for deploying LLMs responsibly in
legal contexts, where mistakes can have serious consequences for case outcomes
and access to justice.

This paper systematically investigates errors in LLM-based factor identifi-
cation and discovery, which are two fundamental tasks in factor extraction. We
focus our study on two legal domains. The first one is the trade secret domain,
with factors that have been long studied in AT and Law research. The second one
is the credit card application domain, with factors that were newly constructed.
We selected four pro-plaintiff factors and four pro-defendant factors from each
domain and generated a case description for each possible set of selected fac-
tors. We explore automating those tasks based on two LLMs: GPT-40 and
GEMINI-2.0-FLASH-LITE. Our analysis shows that high-performing factors tend
to be concrete and established by contracts while low-performing factors tend to
be complex and context-dependent. Furthermore, we found that LLMs tend to
better identify factors from longer descriptions but better discover factors from
shorter ones.

The paper is structured as follows. Section 2 provides background and related
work on factor identification and factor discovery tasks. Section 3 provides an
experiment design. Section 4 reports the result of the experiment. Section 5
discusses the result. Finally, Section 6 concludes this paper.

2 Background and Related Work

In this section, we provide background on factor-based legal reasoning and re-
lated tasks. In factor-based legal reasoning, each factor is assumed to favor one
position on a legal dispute: either the position of plaintiff (7), or the position
of defendant (d). Formally, let F be the set of all factors in a particular legal
domain, where each factor f € F is either a pro-plaintiff factor (noted by a
superscript f™) or a pro-defendant factor (noted by a superscript f°). Given any
plain text T describing a factual situation of a case, called a case description,
it assumes that there is a set of factors X1 < F that represents the situation
described by T.

Next, we define the two fundamental tasks in factor extraction that form the
focus of this paper, namely factor identification and factor discovery. These two
tasks are closely relevant to membership and equivalence queries [3] in machine
learning. We provide definitions based on those queries and related work based
on each task as follows.

2.1 Factor Identification

Factor Identification, which is also known as factor classification, is the task
of determining whether or not a given factor is required to represent the factual
situation of the present case. We formally define the task, based on a membership
query [3], as follows.

Definition 1 (factor identification: ide). Given a case description T and a
factor x € F, the factor identification function, denoted as ide(T, x), returns ‘y’
if x € Xp, or ‘n’ otherwise.

Previous research [4,7,12] in AT and Law has explored various machine learn-
ing techniques to automate this task. They found that most legal decisions typ-
ically depend on a relatively small subset of commonly used factors. However, it
requires more efforts in order to provide more transparent explanations that legal
professionals could understand and verify. Their works mainly established that
automating factor identification is computationally feasible but highlighted the
ongoing challenge of explainability requirements essential for legal applications.

2.2 Factor Discovery

Factor discovery is the task to define a new factor that is not included in the
given set of factors, but required to represent the factual situation of the present
case. We formally define the task, based on an equivalence query [3], as follows.

Definition 2 (factor discovery: dis). Given a case description T and a finite
set of factors Y < F, the factor discovery function, denoted as dis(T,Y), returns
one factor x € Xp\Y if it exists (i.e., X7\Y is not empty), or ‘n’ otherwise.

Recent work [8] has investigated how well LLMs could automatically ex-
tract domain representations as factors from raw legal opinions. They found
that while fully automated factor discovery achieved only weak to moderate
performance, human-in-the-loop approaches showed feasibility. A critical limita-
tion they identified was that all models, including humans, occasionally returned
legally irrelevant factors, highlighting the need to incorporate fundamental legal
knowledge into model prompting. This work suggests that LLM-based factor
discovery holds promise for assisting legal researchers and practitioners in or-
ganizing case law and developing predictive models, but requires careful human
oversight to ensure legal relevance and accuracy.

3 Experiment Design

In this section, we present the workflow of our experiments on factor identifi-
cation and discovery using LLMs, as depicted in Fig. 1. Since it is infeasible to
assess all factors, we define a factor list F € F consisting of selected factors in a
certain domain. Then, for each subset X of F, we instruct LLMs to generate a
case description T with the expectation that the set of factors X representing
T is identical to X. We denote this generation as gen(X). To ensure each subset
can be a representation of a situation, F is checked to be conflict-free; that is, two
factors can occur at the same time. We also instruct LLMs to simulate ide(T), p)
and dis(T, P) as defined in the previous section. We detail each component in
the pipeline as follows.

XcF case description |1 = gen(X) [factor identification| € X7 (y/n)

| —

generation gen(X) > ide(T,)
zelF
T = gen(X)
factor discovery ze X\Y
> ! —
> dis(T,Y)
YCF

Fig. 1: Experiment Workflow

3.1 Factor Lists

In this paper, we consider two legal domains. The first domain is the domain
of trade secret law (7: the defendant misappropriated the trade secret; J: the
defendant did not misappropriate the trade secret), as used in CATO [1]. We
selected four pro-plaintiff factors and four pro-defendant factors that were used
to represent publicly available case documents and discussed in several prior
studies (e.g., [5,12,13]). The CATO factor list, denoted as F.44,, consists of the
following factors:

1. mea™: The plaintiff implemented sufficient security measures to maintain
the secrecy of the trade secret information.

2. hir™: The defendant hired the plaintiff’s key personnel with trade secret

information.

. ide™: The defendant’s product is identical or nearly identical.

. mat™: The defendant brought or reused materials from the plaintiff’s project.

5. dis’: The plaintiff disclosed the trade secret information during business
negotiations.

6. out?: The plaintiff shared the trade secret information to people outside the
organization.

7. gen®: The defendant’s product could have been developed without using the
plaintiff’s trade secrets.

8. pub5: The plaintiff disclosed information in public forum.

=~ W

The second factor domain is the domain of credit card application (7: the
credit card application was rejected; § the credit card application was accepted).
Althrough these factors have been used in our recent work [6], they have not
been publicly available and discussed at the time of the experiment. To make
it comparable with the CATO factor list, we selected only the first four pro-
plaintiff factors and the first four pro-defendant factors from the original list in
[6]. The CREDIT factor list, denoted as F,.cq:t, consists of the following factors:

1. cre™: The applicant has high number of recent credit inquiries.
2. mis”™: The applicant has a history of missed or late payments.

loi"™: The applicant has insufficient income.

Ich™: The applicant has limited credit history.

dir’: The applicant has a low debt-to-income ratio.

emp?®: The applicant has a long and stable employment history.

pay’: The applicant has a consistent payment history on existing loans.
dec’: The applicant has significant assets declared.

XN oW

3.2 Case Description Generation

To generate case descriptions, we instruct LLMs using the following prompt
template:

Prompt 1.1: Case Description Generation

TASK: To generate an example of case description in {domain} domain that
requires all factors in an included factor set to represent the siuation
of the case, and prevents using any factors in an excluded factor set to
represent the situation of the case.
INPUT: You will be provided with an included factor set and an excluded
factor set.
Included Factor Set:
{included_factor_set}
Excluded Factor Set:
{excluded_factor_set}
OUTPUT: Generate a concise case description in plain text.
Do NOT explicitly use the same words as those in factors.
Do NOT include an outcome of the case.

The prompt is to generate a case description from a subset of factor lists
X < F, called an included factor set, and F\X, called an ezcluded factor set.
This aims to generate an example of case description that uses all factors in X
and does not use any factor in F\X to represent the corresponding situation.
We generate a case description for every non-empty proper subset of factor list.
Since our factor lists each have eight factors, 28 — 2 = 254 case descriptions are
generated (the two excluded sets are the empty set and the whole factor set). We
used two large language models in the experiments: GPT-40 and GEMINI-2.0-
FLASH-LITE so there are two generated descriptions for each subset. Here is one
example of case description generated by GPT-4o, for a subset {mea™, pub‘s}
of]Fcato:

In a recent case involving alleged misappropriation of proprietary infor-
mation, the plaintiff, a technology company, maintained strict protocols
to secure their proprietary algorithms, ensuring that employees could
only access this information under stringent clearance levels and control
measures. Despite these efforts, the algorithms were inadvertently made
available in a public online repository due to a misconfiguration by a
third-party vendor responsible for their IT services. |[...]

Here is one example of case description generated by GEMINI-2.0-FLASH-
LITE, for a subset {mea™, pubé} of Feuto:

A software company, Alpha Corp, stored its proprietary source code on
a password-protected server with limited employee access. Despite these
measures to protect the confidentiality of its development process, Alpha
Corp presented its new program at a large industry conference, allow-
ing attendees to freely examine and test it. This public demonstration
provided everyone the opportunity to inspect the inner workings of the
software.

3.3 Factor Identification

To identify whether a given factor is used to represent the situation of the case,
we instruct LLM using the following prompt template:

Prompt 1.2: Factor Identification

TASK: To identify whether a given factor is used to represent the
situation of the case.
INPUT: You will be provided with a case description and a factor.
Case Description:
{description}
Factor:
{factor}
OUTPUT:
’YES’ if the factor is used to represent the situation of the case.
’NO’ if the factor is NOT used to represent the situation of the case.

The experiment on this task is as follows. For each case description generated
from a subset of the factor list, we tried to identify every factor in the full
factor list. If the factor is in the original subset and is correctly identified by the
LLM, it is counted as ‘true positive’ (T P). If the factor is in the original subset
but is not identified by the LLM, it is counted ‘false negative’ (F'N). If the
factor is not in the original subset but it is identified by the LLM, it is counted
as ‘false positive’ (FP). After considering all generated case descriptions, we
measure the performance of identifying each factor using precision, recall, and
the Fl-score, as in general classification performance metrics, defined as follows:

Precision — TP
recision = TP FP
TP
l=—r——
Reca TP+ FN
Precision - Recall 2-TP

F1-score = 2 -

Precision + Recall 2-TP + FP+ FN

3.4 Factor Discovery

To discover a new factor to represent the situation of the case, we instruct LLMs
using the following prompt template:

Prompt 1.3: Factor Discovery

TASK: To define a new factor that should be introduced beyond the factor
given in the factor list to represent the situation of the case.
INPUT: You will be provided with a factor list and a case description.
Case Description:
{description}
Factor List:
{factor_list}
OUTPUT:
Define a new factor that should be introduced in a concise plain text.
Do NOT provide a reason or an explanation.

The experiment on this task is as follows. For each case description gener-
ated from a subset of the factor list, we took one factor out from the subset
and provided the remaining set as the input factor list to the LLM. Since the
descriptions of the discovered factor provided by the LLM would not be identical
to those descriptions that we have, we instruct LLMs using the following prompt
template to check whether two factor descriptions describe the same factor.

Prompt 1.4: Factor Checking

TASK: To check whether two factor descriptions describe the same factor.
INPUT: You will be provided with two factor descriptions.
Factor Description 1:
{descriptioni}
Factor Description 2:
{description2}
OUTPUT:
’YES’ if two factor descriptions describe the same factor.
’NO’ if two factor descriptions do NOT describe the same factor.

If the description of the discovered factor and the description of the taken
out factor describe the same thing, it is counted as a ‘hit’. After considering
all generated case descriptions, we measure the performance of discovering each
factor using a hit rate, defined as follows:

Number of Times the Factor Taken Out and Discovered (Hit)

Hit Rate =
b hate Number of Times the Factor Taken Out

4 Result

In this section, we report the result from our experiments. In our experiments,
we used two factor lists: CATO and CREDIT and two large language models:
GPT-40 and GEMINI-2.0-FLASH-LITE (denoted as GPT and GEMINI, respec-
tively). Hence, there are four generated case description sets, namely CATO-
GPT, CATO-GEMINI, CREDIT-GPT, and CREDIT-GEMINI. We report the re-
sults as follows.

gen out dis mat ide hir mea

pub

i 0.9328
£
= 0.9921
4 03
=l 0.9730
13
2
5
S - 08380

0.9600

0.9291

0.9843

0.8523 0.8533

1.0000

0.9717

0.8939

0.8273 0.7161

0.9551

0.9524

0.9333

0.9667

0.9333

0.9462
0.9167

0.9310

(e) (CREDIT) Precision

0.975

0.950

0.925

0.900

- 0.875

- 0.850

-0.825

- 0.800

1.00

0.95

0.90

-0.85

-0.80

pay emp dir

dec

dis mat ide hir mea

out

0.9590

0.9060

0.9512

0.9760

0.9370

0.9449

0.9291

0.9291

0.8740

0.2055

0.9528

0.8898

1.0000

0.9528

1.0000

0.9492

0.9831

0.9492

0.7647

0.9643

0.8819

0.9528

0.8976

(f) (CREDIT) Recall

Fig. 2: Comparative performance on factor identification

0.95

0.20

-0.85

-0.80

0.95

0.20

0.85

-0.80

-0.75

-0.70

1.00

0.95

0.30

0.85

-0.80

-075

-0.70

4.1 Factor Identification

Fig. 2 shows comparative performance (precision, recall, and the F1-score) on the
factor identification task using heatmaps. First, we consider which CAT O factors
contribute the highest and the lowest F'1-scores and how those factors contribute
precision and recall. Fig. 2a shows that hir™ contributes the highest Fl-score
in the experiments based on CATO-GPT and also the experiments based on
CATO-GEMINI and using GEMINI as the base LLM. dis® contributes the highest
F1l-score in the experiment based on CATO-GEMINI and using GPT as the base
LLM. Fig. 2c and Fig. 2d show that both factors contribute higher precision and
recall compared to others. Meanwhile, Fig. 2a shows that pub’ contributes the
lowest Fl-score in the experiments based on CATO-GPT and out’® contributes
the lowest Fl-score in the experiments based on CATO-GEMINI. Fig. 2c and Fig.
2d show pub§ contributes relatively low recall while out® contributes relatively
low precision.

Next, we analyze which CREDIT factors that contribute the highest and the
lowest Fl-score and how those factors contribute precision and recall. Fig. 2b
shows that emp?® has the highest Fl-score in the experiment based on CREDIT-
GPT and using GPT as the base LLM; dec’ has the highest F1-score in the
experiment based on CREDIT-GPT and using GEMINI as the base LLM and
the experiment based on CREDIT-GEMINI and using GPT as the base LLM;
and loi™ has the highest Fl-score in the experiment based on CREDIT-GEMINI
and using GEMINI as the base LLM. Fig. 2e and Fig. 2f show that those factors
tend to have high recall. Meanwhile, dir’ contributes the lowest Fl-score in the
experiments based on CREDIT factors across every setting. Fig. 2e shows that
dir’ contributes relatively low precision.

When comparing across the domains, Fig. 2c and Fig. 2e show that pro-
plaintiff factors tend to contribute higher precision than pro-defendant factors.
Fig. 2f shows that pro-defendant CREDIT factors tend to contribute higher recall
than pro-plaintiff CREDIT factors. However, Fig. 2d does not clearly show that
pro-defendant CATO factors tend to contribute higher recall than pro-plaintiff
CATO factors. Additionally, when comparing between the case description sets
generated by both LLMs, the case description sets generated by GPT tend to
contribute higher and more consistent performance (precision, recall, and the
Fl-score) than the description sets generated by GEMINI.

4.2 Factor Discovery

Fig. 3 shows comparative performance (hit rate) on the factor discovery task
using heatmaps. Fig. 3a shows that hir™ contributes the highest hit rate. It
also shows that ide” contributes the lowest hit rate in the experiments based
on CATO factors using GPT as the base LLM,; dis® contributes the lowest hit
rate in the experiment based on CATO-GPT and using GEMINI as the base
LLM; and mea™ contributes the lowest hit rate in the experiment based on
CATO-GEMINI and using GEMINI as the base LLM. Fig. 3b shows that dec®
contributes the highest hit rate in the experiment based on CREDIT-GPT and

0.9

0.8413 0.9048

o
EY
cre

0.2063 0.1524 0.1825 0.0952

0.8333 0.7698 0.8

mis

hir mea

- oo0z38 0.2381 0.0873 0.6 Kl 07
B- 00476 0.1154 0.2063 0.2778 05 5 0.8492 CEZED
E 0.6
£- 00635 0.0686 0.4206 04 3 0202 LHRED
a - -05
5 01569 05635 -03 g 0.6667 0.9206 0.8095
- -02 > 0.6905 0.7937 0.8571 0.4
5 0.2941 0.6349 0.4603 g : : -
% 0.2079 0.6508 -01 E [VE:RED] 0.8016 0.8095 -03
]
& &
N &
& L
5 e
(& A
"
&
(a) (CATO) Hit Rate (b) (CREDIT) Hit Rate

Fig. 3: Comparative performance on factor discovery

emp?® contributes the highest hit rate in the experiment using GPT as the base
LLM. It also shows that loi" contributes the lowest hit rate in the experiments
based on CREDIT factors and using GPT as the base LLM; dir’ contributes the
lowest hit rate in the experiment based on CREDIT-GPT and using GEMINI as
the base LLM; and cre™ contributes the lowest hit rate in the experiment based
on CREDIT-GEMINI and using GEMINI as the base LLM.

When comparing across the domains, Fig. 3 shows that pro-defendant factors
tend to contribute higher hit rate than pro-plaintiff factors. Additionally, when
comparing between the case description sets generated by both LLMs, the case
description sets generated by GEMINI tend to contribute higher and consistent
hit rate than the description sets generated by GPT.

5 Discussion

This paper examined how the inherent characteristics of legal factors system-
atically influence the performance of LLMs in two fundamental tasks of factor
extraction: factor identification and factor discovery.

Our analysis of factor identification (Section 4.1) revealed that high-performing
factors tend to be concrete or contract-based, such as those involving employ-
ment or explicit contractual terms. Their clarity and explicitness make them
easier for LLMs to identify. In F4¢,, for instance, factors such as hir” (the de-
fendant hired the plaintiff’s key personnel with trade secret information) and
dis® (the plaintiff disclosed the trade secret information during business nego-
tiations) performed well. Similarly, in Fecq;r, emp® (the applicant has a long
and stable employment) and dec’ (the applicant has significant assets declared)
were high-performing.

10

In contrast, low-performing factors tend to be complex or context-dependent,
often involving boundaries or degrees that require nuanced reasoning. These fac-
tors typically demand contextual interpretation or inferential judgment beyond
surface-level cues. For example, in F .40, pub5 (the plaintiff disclosed informa-
tion in public forum) and out® (the plaintiff shared the trade secret information
to people outside the organization) performed poorly. Likewise, in Fepeqit, dir’
(the applicant has a low debt-to-income ratio) consistently exhibited the lowest
performance across all settings.

These tendencies align with factor polarity. Because plaintiffs are typically
the initiating party in litigation, pro-plaintiff factors tend to be better supported
by concrete evidence, such as contracts or documents, leading to higher precision.
By contrast, pro-defendant factors show more variation across domains. In Fe.+,,
pro-defendant factors are generally context-dependent, while in F,..4;;, they tend
to be more concrete and context-independent.

Our analysis of factor discovery (Section 4.2) highlighted the challenges LLMs
face in defining new factors from case descriptions. In comparison to identifi-
cation, discovery performance was relatively lower. Difficult-to-discover factors
were either too subtle or highly overlapping with other factors in the set, mak-
ing it challenging for the LLM to isolate and reconstruct the missing element. In
Fcuto, examples include ide™ (the defendant’s product is identical or nearly iden-
tical), dis® (the plaintiff disclosed the trade secret information during business
negotiations), and mea™ (the plaintiff implemented sufficient security measures
to maintain the secrecy of the trade secret information) are hard to discover. In
Feoreait, 10i" (the applicant has insufficient income), dir’ (applicant has a low
debt-to-income ratio), and cre™ (the applicant has high number of recent credit
inquiries) were particularly challenging to discover.

We also found that task performance varied with the length of the case de-
scription. As shown in Section 3.2, case descriptions generated by GPT tended
to be longer than those produced by GEMINI. Consequently, LLMs achieved bet-
ter performance in factor identification using descriptions generated by GPT,
likely because longer descriptions emphasize relevant details. Conversely, fac-
tor discovery performed better with shorter descriptions generated by GEMINI,
which may contain less textual noise and redundancy.

Interestingly, we observed that the well-established CATO factors often re-
sulted in lower performance than the newly constructed CREDIT factors. One
possible explanation is that LLMs already possess background knowledge about
trade secret law. When generating case descriptions, they may implicitly add
unlisted but related factors, which in turn affects both the identification and
discovery tasks.

These findings reveal a limitation in our experimental setup: some errors may
originate from the case description generation phase itself. Future research should
therefore focus on extracting factors directly from real precedent cases to better
capture authentic legal reasoning. Nonetheless, our results highlight important
technical challenges for legal AI development. In particular, they suggest the

11

value of adapting extraction strategies to factor characteristics and applying
legal case summarization techniques in factor extraction to mitigate errors.

6 Conclusion

This paper investigated errors arising from the use of LLMs to automate two
fundamental tasks in factor extraction: factor identification and factor discovery.
We conducted experiments across two legal domains — trade secret law and
credit card applications — using two LLMs, GPT-40 and GEMINI 2.0 FLASH
LITE, to generate case descriptions and perform these tasks. Our analysis reveals
that high-performing factors tend to be concrete and established by contracts,
whereas low-performing factors are typically complex and context-dependent.
Additionally, we found that LLMs identify factors more accurately from longer
case descriptions but discover new factors more effectively from shorter ones.
Future research could extend this work by focusing on factor extraction from real
precedent cases, adapting extraction methods to specific factor characteristics,
and applying legal case summarization techniques in factor extraction.

Acknowledgements

This work was supported by the “R&D Hub Aimed at Ensuring Transparency
and Reliability of Generative Al Models” project of the Ministry of Educa-
tion, Culture, Sports, Science and Technology, the “Strategic Research Projects”
grant from ROIS (Research Organization of Information and Systems), and
JSPS KAKENHI Grant Numbers, JP22H00543, JP25H00522, JP25H01112, and
JP25H01152. We appreciate all comments from the reviewers.

References

1. Aleven, V.: Teaching case-based argumentation through a model and examples.
Ph.D. thesis, University of Pittsburgh (1997)

2. Aleven, V., Ashley, K.D.: Doing things with factors. In: Proceedings of the 5th
international conference on artificial intelligence and law. pp. 31-41 (1995)

3. Angluin, D.: Queries and concept learning. Machine learning 2(4), 319-342 (1988)

4. Ashley, K.D., Briininghaus, S.: Automatically classifying case texts and predicting
outcomes. Artificial Intelligence and Law 17(2), 125-165 (2009)

5. Briininghaus, S., Ashley, K.D.: Reasoning with textual cases. In: International
Conference on Case-Based Reasoning. pp. 137-151. Springer (2005)

6. Fungwacharakorn, W., Zin, M.M., Nguyen, H.T., Kong, Y., Satoh, K.: Argumenta-
tive reasoning with language models on non-factorized case bases. In: Proceedings
of the Second International Workshop on Next-Generation Language Models for
Knowledge Representation and Reasoning (NeLaMKRR 2025) (2025)

7. Gray, M., Savelka, J., Oliver, W., Ashley, K.: Automatic identification and empir-
ical analysis of legally relevant factors. In: Proceedings of the Nineteenth Interna-
tional Conference on Artificial Intelligence and Law. pp. 101-110 (2023)

12

10.
11.

12.

13.

Gray, M., Savelka, J., Oliver, W., Ashley, K.: Using LLMs to discover legal factors.
In: Legal Knowledge and Information Systems, pp. 60-71. IOS Press (2024)
Horty, J.F., Bench-Capon, T.J.: A factor-based definition of precedential con-
straint. Artificial intelligence and Law 20(2), 181-214 (2012)

Rempell, S.: Factors. Buff. L. Rev. 70, 1755 (2022)

Rissland, E.L., Ashley, K.D.: A case-based system for trade secrets law. In: Pro-
ceedings of the 1st international conference on Artificial intelligence and law. pp.
60-66. Association for Computing Machinery, New York, NY, USA (1987)
Wyner, A., Peters, W.: Towards annotating and extracting textual legal case fac-
tors. In: Proceedings of the 3rd Workshop on Semantic Processing of Legal Texts
(SPLeT 2010). pp. 36-45 (2010)

Zheng, H., Grossi, D., Verheij, B.: Logical comparison of cases. In: International
Workshop on AI Approaches to the Complexity of Legal Systems. pp. 125-140.
Springer (2018)

13

From LegalRuleML to Defeasible Deontic Logic

Guido Governatori', Monica Palmirani?, and Muhammad Asif?

1 School of Engineering and Technology, Central Queensland University, Australia
2 ALMA-AI, University of Bologna

Abstract. LegalRuleML is an application-agnostic standard for the rep-
resentation of legal knowledge. Accordingly, once a set of legal provisions
has been encoded in LegalRuleML, they must be translated into a target
language before the rules can be used in practical applications. In this
paper, we present a novel parser that enables the translation from Legal-
RuleML to a recent implementation of Defeasible Deontic Logic. The
transformation process is illustrated with provisions from the Australian
Spent Conviction scheme (Part VIIC of the Australian Crimes Act 1914).

Keywords: LegalRuleML, Defeasible Deontic Logic, Answer Set Pro-
gramming

1 Introduction

A recent OECD white paper [13] reports that the adoption of Rules as Code
(RaC) in government services would provide several benefits. RaC is the prac-
tice of expressing laws and regulations in a machine-readable format, enabling
automated decision-making and service delivery. The benefits of RaC include
improved efficiency, accuracy, and transparency in government services. However,
the adoption of RaC also presents several challenges, including the need for
standardisation, the complexity of legal language, and the challenges of legal
automated decision-making. A further issue that hampers the adoption of RaC
is that many languages and frameworks have been proposed for the execution
of rules (see [2,14,17,6] for an overview of existing RaC approaches). Often
these languages are domain specific and adopt different semantics. Accordingly,
there is no common understanding of how the consequences of rules should be
computed. This means that the same provision can be encoded in different ways;
consequently, the representations are not interoperable.

To address the issue of standardisation, the OASIS LegalRuleML Technical
Committee has developed LegalRuleML [15, 1], an XML-based standard for the
representation of legal norms. LegalRuleML provides a rich set of constructs to
represent legal norms, including deontic concepts such as obligation, permission,
and prohibition. However, LegalRuleML is application-agnostic, meaning that it
does not provide a specific language for the execution of rules. Therefore, once a
set of legal provisions has been encoded in LegalRuleML, they must be translated
into a target language before the rules can be used in practical applications.
Accordingly, translators/parsers are needed to transform the rules into target
languages for execution.

14

The contribution of this paper is twofold. First, we illustrate how to represent
legal norms in LegalRuleML using examples from the Australian Spent Conviction
scheme (Part VIIC of the Australian Crimes Act 1914). Second, we present a novel
parser that enables the translation from LegalRuleML to a recent implementation
of Defeasible Deontic Logic (DDL) [6], a logic specifically designed for reasoning
with legal norms. The DDL implementation is based on Answer Set Programming
(ASP) [5,4] and is available as an open-source tool®.

The rest of the paper is structured as follows. In Section 2, we provide a brief
overview of LegalRuleML. In Section 3, we provide a brief overview of Defeasible
Deontic Logic. In Section 4, we present our parser from LegalRuleML to DDL.
In Section 5, we illustrate the use of LegalRuleML and the parser with examples
from the Australian Spent Conviction scheme. Finally, in Section 6, we conclude
the paper and discuss future work.

2 LegalRuleML

LegalRuleML [15, 1] (LRML) is an OASIS standard for the representation of legal
provisions. The standard is based on XML and provides a rich set of constructs
to represent legal norms. In LegalRuleML, a legal provision is represented as a
rule with an IF ... THEN structure, where rules can be classified as constitutive
or prescriptive. Also, it is possible to specify the strength of the rule (strict,
defeasible, and defeater). A strict rule is a rule that is always applicable when
the conditions in the IF part are satisfied. A defeasible rule is a rule that can be
defeated by other rules, while a defeater is a rule that can be used to prevent the
application of other rules, but it does not support the derivation of conclusions.
Accordingly, a (defeasible) prescriptive rule is represented as:

<lrml:PrescriptiveStatement key="ps_r">
<ruleml:Rule key="r">
<lrml:hasStrength>
<lrml:DefeasibleStrength iri="lov:defeasible"/>
</1lrml:hasStrength>
<ruleml:if>
<!-- logical formula -->
</ruleml:if>
<ruleml:then>
<!-- deontic formula(s) in the scope of obligation -->
</ruleml:then>
</ruleml:Rule>

3] </1lrml:PrescriptiveStatement >

The structure of a constitutive rules is similar. The main differences are that
the rule is enclosed in a <lrml:ConstitutiveStatement> element, and the deontic
formula in the <ruleml:then> element is replaced by a formula without deontic
operators.

Permissive rules are represented similarly, but the difference from prescriptive
rules is that the deontic formulas in the <ruleml:then> element are in the scope
of the permission deontic operator.

3https://github.com/gvdgdo/Defeasible-Deontic-Logic

15

AW e

Formulas in LegalRuleML are built using the constructs provided by RuleML
[3], extended with deontic operators. The basic building block is the atomic
formula, represented as:

<ruleml:Atom>
<ruleml:Rel iri="voc:predicate"/>
<ruleml:Ind iri=":constant"/>
<ruleml:Var keyref="#variable"/>
</ruleml:Atom>

where voc:predicate is the predicate of the atom (the definition and meaning
of the predicate is given in an external vocabulary file referred to by voc).*
The predicate can have an arity (including 0, in which case it is a proposition),
and the arguments can be constants or variables. The element <ruleml:Ind>

is used to represent a constant, while the element <ruleml:Var> is used to
represent a variable. More complex formulas can be built using the standard
logical connectives. Also, LegalRuleML admits the use of functions. We use iri
to bind variables and constants. More specifically, when iri starts with : we
introduce a new variable/constant, while when it starts with # we refer to an
already defined variable/constant.

A deontic formula is a formula in the scope of a deontic operator. The deontic
operators we consider are obligation, permission, and prohibition (obligation of
the negation). Thus, for example, the deontic formula “it is obligatory to disclose
the conviction” can be represented as:

<lrml:0bligation>
<ruleml:Atom>
<ruleml:Rel iri="voc:disclose"/>
<ruleml:Var iri=":person"/>
<ruleml:Var iri=":conviction"/>
</ruleml:Atom>
</lrml:0bligation>

A special type of deontic formula is the SuborderList which is used to represent
a list of alternative obligations, where the elements in the list are ordered. For
example, the suborder list “it is obligatory to pay a fine; if it is not paid, to do
community service; and if that is not done, to undergo imprisonment” can be
represented as:

<lrml:SuborderList>
<lrml:0Obligation>
<ruleml:Atom>
<ruleml:Rel iri="voc:pay_fine"/>
</ruleml:Atom>
</1lrml:0bligation>
<lrml:0Obligation>
<ruleml:Atom>
<ruleml:Rel iri="voc:do_community_service"/>
</ruleml:Atom>
</lrml:0bligation>

“In this paper we assume the existence of two vocabularies, voc defining the terms
specific to the domain application, and loc for the definition of logical terms and
functions.

16

=

<lrml:0Obligation>
<ruleml:Atom>
<ruleml:Rel iri="voc:do_imprisonment"/>
</ruleml:Atom>
</1lrml:0bligation>
</1lrml:SuborderList>

The final type of statement we consider is the specification of the relative
strength of two rules. This is captured by lrml:0verride element. For example,
the statement “rule ry is stronger than rule r5”, meaning that in case the rules
are both applicable, rule r; takes precedence over rule r,, is represented as

<lrml:0OverrideStatement >
<lrml:0verride over="#r_1" under="#r_2"/>
</1lrml:0verrideStatement >

Furthermore, LegalRuleML offers facilities to connect the rules with their
sources:

<lrml:Association>
<lrml:appliesSource keyref="ex:Article 4"/>
<lrml:toTarget keyref="#r4"/>
</1lrml:Association>

This statement specifies that rule r is the encoding of Article 4 of the document
specified by the reference “ex”. However, we do not use this feature in this paper.

The last element is that ontologies or vocabularies can be integrated with
the specification of the rules. In the example above, the vocabulary is used to
specify the relation between the rules and the concepts in the domain. Thus,
voc:publish and voc:commission are terms in the vocabulary. For our purpose,
the elements in the vocabulary have the following form:

<Term key="evaluate'">

<Atom>evaluate<Atom>

<Description>evaluate the product</Description>
</Term>

LegalRuleML offers many more features for representing the meta-data and for
linking the rules with their legal source. However, since these are not relevant for
the purpose of the current paper, they will be ignored. For a detailed presentation
of LegalRuleML and its features see [1].

3 Defeasible Deontic Logic (DDL)

Defeasible Deontic Logic (DDL) [9, 11] is an efficient rule-based logic specifically
designed for reasoning with legal norms. The presentation of DDL in this paper is
based on its recent implementation in Answer Set Programming (ASP) [6]. While
ASP and DDL are two computational approaches to non-monotonic reasoning,
they have different semantics and thus they are not directly comparable. In
addition, some recent works [7, 10] point out that Stable Semantics (the semantics
for ASP) is not suitable for normative reasoning, while the semantics of DDL

17

N

w N

N

does not suffer from the problems affecting ASP. However, ASP can be used as a
meta-program to correctly encode the reasoning mechanism of DDL. In addition,
the ASP implementation allows representing rules with variables and constants,
and the computation is supported by the efficient ASP grounding mechanism.

The language of DDL is defined on a set of atoms, where an atom is declared
with the expressions

atom(atomName) .
atom(atomName (<Variables>)) :-
<typeVariablel >(Variablel), ..., <typeVariableN>(VariableN).

depending on whether we define a proposition or a literal based on a predicate
(of any arity). In the case of a predicate, the variables occurring in the predicate
must be grounded (and we introduce a type or domain for each variable).

Rules are built from literals, where a literal is either a plain literal (an atom
or a negated atom—an atom in the scope of a negation, i.e., non) or a deontic
literal, where a deontic literal is a literal in the scope of a deontic operator,
specifically, obligation (obl) and permission (perm). A prohibition is represented
as the obligation of the negation of the literal.

DDL offers three types of rules: constitutive rules, prescriptive rules and
permissive rules. A constitutive rule is used to define new concepts in terms of
existing ones. A constitutive rule has the form

constitutiveRule (<label>, <head>).
body (<label>, (<bodyl>;...;<bodyN>)).

where <label> is a unique identifier for the rule, <head> is a literal (atom or
negated atom), and <body1>; ... ;<bodyN> is a conjunction of literals. The intuitive
meaning of the rule is that if one of the elements in the body holds, then the
head holds. In case the head or any element of the body contains a variable, the
rules must be grounded, and the variables must be declared as explained above
for atoms. Thus we have the following pseudo-code:

constitutiveRule (<label>(<Variables>), <head>(<Variables>)) :-

<typeVariablel >(<Variablel>), ..., <typeVariableN>(<VariableN>).
body (<label>(<Variables>),
(<bodyl>(<Variables>);...;<bodyN>(<Variables>))) :-
<typeVariablel>(<Variablel>), ..., <typeVariableN>(<VariableN>).

A prescriptive rule is used to represent an obligation, and has the form

prescriptiveRule (<label>, <head>).
body (<label>, (<bodyl>;...;<bodyN>)).

The intuitive meaning of the rule is that if the elements of the body hold, then it
is obligatory that the head holds. The head and the body can contain variables,
and the rules must be grounded as explained for constitutive rules.

Moreover, it is possible to specify compensatory obligations, i.e., obligations
that come into force when another obligation is violated. This is done by means
of the compensate rule, which has the form

compensate (<label>, <headl>, <head2>, <level>).

18

N

where <label> is the label of a prescriptive rule, <head1> and <head2> are two
literals, and <level> is a positive integer. The intuitive meaning of the rule is that
if the obligation <head1> is violated, then it is obligatory to fulfill the obligation
<head2>. The level is used to specify a hierarchy of compensatory obligations.
Finally, a permissive rule is used to represent a permission, and has the form

permissiveRule (<label>, <head>).
body (<label>, (<bodyl>;...;<bodyN>)).

The intuitive meaning of the rule is that if the elements of the body hold, then it
is permitted that the head holds. The head and the body can contain variables,
and the rules must be grounded as explained for constitutive rules.

4 An LRML to DDL Parser

For the purpose of this paper, and the parser from LegalRuleML to DDL, we
restrict the parser to a subset of LegalRuleML. Specifically, we restrict the
formulas in the <ruleml:if> element to be conjunctions of (deontic) literals
(atoms and negated atoms) or conjunctions of (deontic) literals and disjunctions
(where the disjuncts are (deontic) literals). Also, we restrict the formulas in the
<ruleml:then> element to be a single deontic literal or a conjunction of deontic
literals or a suborder list for prescriptive rules; a single deontic literal or a
conjunction of deontic literals for permissive formulas; and a single literal or a
conjunction of literals for constitutive rules. While more complex formulas can
be represented in LegalRuleML, the restriction is necessary to guarantee that the
output of the parser is a well-defined DDL theory, and from practical experience
it is sufficient to represent most legal norms. More complex formulas can be
represented in LegalRuleML,; but they would require a more complex translation
to DDL, which is left for future work.

Unfortunately, space reasons prevent us from providing a formal definition of
the parser. However, we give the main ideas and outline the translation, and we
provide examples of the translations in Section 5. The parser checks the type of
the rule and analyses each statement. If the statement contains a constitutive
rule, the parser creates a constitutive rule in DDL. If the statement contains a
prescriptive rule, the parser checks the then part to see if it contains obligations,
permissions, or suborder lists. If the then part is a single element, then it creates
a single rule (a prescriptive rule in the case of an obligation or suborder list),
and a permissive rule for permissions.

Moreover, the parser checks if ruleml:if and ruleml:then parts contain vari-
ables. If they do, the parser collects them and adds them as arguments of the
predicates in the label and the head of the rule. In ASP variables must be
grounded, so for each variable, the parser creates a domain predicate. The con-
vention we use is to use the suffix “ID” for variables representing objects, and
“Dates” for variables representing dates. For example, if the variable is #person,
the parser creates the domain predicate personID/1.

The output of this part is

19

<type>Rule (<label>(<variables>), <head>(<variables>)) :-
<typeVariablel >(<variablel>), ... <typeVariableN>(<variableN>).

If the ruleml:then part contains a conjunction of elements, the parser creates a
single rule if the elements are all obligations (prescriptive rule), or all permissions
(permissive rule), or all literals (constitutive rule). If the elements are mixed, the
parser creates multiple rules, one for each element (as illustrated above). If the
conjuncts are of the same type, the parser creates a rule where the conjunctions
are pooled in the second element of <type>Rule

<type>Rule (<label>(<variables>),
(<headl>(<variables>); ... <headN>(<variables))) :-
<typeVariablel >(<variablel>), ... <typeVariableN>(<variableN>).

This is equivalent to the creation of multiple rules.

If the ruleml:then part contains a suborder list, the parser creates a prescrip-
tive rule where the head of the rule is the first element of the list, and then
creates n compensate rules, where n is the number of elements in the list minus
one. The compensate rules have the following form:

compensate (<label>(<variables>),
<headl>(<variables>), <head2>(<variables), 1) :-
<typeVariablel >(<variablel>), ... , <typeVariableN>(<variableN>).
compensate (<label>(<variables>),
<head2>(<variables>), <head3>(<variables), 2) :-
<typeVariablel >(<variablel>), ... , <typeVariableN>(<variableN>).

compensate (<label>(<variables>),
<headN-1>(<variables>), <headN>(<variables), N-1) :-
<typeVariablel >(<variablel>), ... , <typeVariableN>(<variableN>).

If the ruleml:if part only contains a single literal or a conjunction of literals
the parser creates a single body element (with the same convention for grounding
as above):

body (<label>(<variables>),
(<bodyl>(<variables>); ... ; <bodyN>(<variables))) :-
<typeVariablel >(<variablel>), ... , <typeVariableN>(<variableN>).

When it contains a conjunction of literals and disjunctions, for each disjunction
we introduce a new literal for each literal in the disjunction, and we create a new
constitutive rule for the new literal. The body of the original rule contains the
conjunction of the conjuncts in the rule and the new literals.

<type>Rule(<label>(<variables>), <head>(<variables>)) :-

<typeVariablel >(<variablel>), ... , <typeVariableN>(<variableN>).
;| body (<label>(<variables>),
(<bodyl>(<variables>); ... ; <bodyM>(<variables>);
<disjunctionl>(<variables>); ... ; <disjunctionK>(<variables>))
) :-
<typeVariablel >(<variablel>), ... , <typeVariableN>(<variableN>).

constitutiveRule (<newLabell>(<variables>),
<disjunctionl>(<variables>)) :-
<typeVariablel>(<variablel>), ... , <typeVariableN>(<variableN>).

20

oA W

body (<newLabell >(<variables>), <disjunctl_1>(<variables>)) :-
<typeVariablel>(<variablel>), ... , <typeVariableN>(<variableN>).

constitutiveRule (<newLabelK>(<variables>),
<disjunctionl>(<variables>)) :-

<typeVariablel>(<variablel>), ... , <typeVariableN>(<variableN>).
body (<newLabelK>(<variables>), <disjunctl_K>(<variables>)) :-
<typeVariablel >(<variablel>), ... , <typeVariableN>(<variableN>).

In the next section we illustrate the use of the parser.

5 A Case Study: Spent Conviction

A “spent conviction” is a conviction that becomes hidden from public view after
a set period of time but, depending on certain factors, it still remains accessible
for specific (public) purposes by specific interested parties. These schemes are
mainly focused on convictions for less serious crimes and generally do not extend
to convictions for violent crimes and sexual offences. The set period of time is also
extended when the person has re-offended during the set period. In this paper
we concentrate on examples from the Australian Spent Conviction scheme. In
Australia, the Spent Conviction scheme is regulated by Part VIIC of the Crimes
Act 1914 (Cth). We will use the example to illustrate how to model them in
LegalRuleML, and then how to translate them into DDL using our parser.

The encoding in the current paper is inspired by [8], which presents an
encoding of the Australian Spent Conviction scheme in DDL. However, the
current encoding is different since it does not depend on specific characteristics
of DDL, and it is not propositional.

We start our analysis with the definition of waiting period as given in the
Crimes Act 1914 (Cth):

waiting period, in relation to an offence, means:

(a) if the person convicted of the offence was dealt with as a minor in relation to the
conviction-the period of 5 years beginning on the day on which the person was
convicted of the offence; or

(b) in any other case the period of 10 years beginning on the day on which the person
was convicted of the offence.

The above provision can be represented in LegalRuleML by two constitutive
rules (for space reasons, we present only the first one, the second one is similar).

<lrml:ConstitutiveStatement key="s_waiting_period_1">
<ruleml:Rule key="wp_1">

<lrml:hasStrength>

<lrml:DefeasibleStrength iri="lov:defeasible"/>
</1lrml:hasStrength>
<ruleml:if>
<ruleml:And>

<ruleml:Atom>

<ruleml:Rel iri="voc:minorAtConviction"/>

<ruleml:Var iri=":person"/>
<ruleml:Var iri=":conviction"/>
<ruleml:Var iri=":convictionDate"/>

21

S

</ruleml:Atom>
<ruleml:Atom>
<ruleml:Rel iri="voc:fiveYearsElapsed"/>
<ruleml:Var keyref="#person"/>
<ruleml:Var keyref="#conviction"/>
<ruleml:Var keyref="#convictionDate"/>
</ruleml:Atom>
</ruleml:And>
</ruleml:if>
<ruleml:then>
<ruleml:Atom>
<ruleml:Rel iri="voc:waitingPeriodEnded"/>
<ruleml:Var keyref="#conviction"/>
<ruleml:Var keyref="#person"/>
</ruleml:Atom>
</ruleml:then>
</ruleml:Rule>
</lrml:ConstitutiveStatement >

The rule is translated into the following DDL rule:

constitutiveRule (wp_1(Conviction, Person),
waitingPeriodEnded (Conviction, Person)) :-
convictionID(Conviction), personID(Person).
body (wp_1(Conviction, Person),
(minor (Person, Conviction, ConvictionDate);
fiveYearElapsed (Person, Conviction, ConvictionDate)) :-
personID(Person), convictionID(Conviction),
convictionDates (ConvictionDate).

Here we have a constitutive statement where the if part contains a simple
conjunction of literals, and the then part a single literal. Accordingly, we create
a single constitutive rule in DDL. In the declaration of the rule we have the
head of the rule, and the label of the rule. For both elements, we identified the
variables appearing in them, and we added them as arguments of the predicates.
In the body of the rule, we have the conjunction of literals, and we can use a
single body element. Again, we have to ground the variables appearing in the
body, so we first collect them. We use the convention to use the word “Date” as
suffix for variables representing dates (and the parser creates the suitable domain
predicate, i.e., convictionDates/1).

For another example of a constitutive rule (where we have a disjunction) we
can consider the rules encoding Section 85ZM9(2)(b):

(2) For the purposes of this Part, a person’s conviction of an offence is spent if:

(b) the person was not sentenced to imprisonment for the offence, or was not
sentenced to imprisonment for the offence for more than 30 months, and the
waiting period for the offence has ended.

<lrml:ConstitutiveStatement key="s_85ZM_2b">
<ruleml:Rule key="r_85ZM_2b">
<lrml:hasStrength>
<lrml:DefeasibleStrength iri="lov:defeasible"/>
</lrml:hasStrength>
<ruleml:if>
<ruleml:And>

22

<ruleml:0r>
<ruleml:Neg>
<ruleml:Atom>
<ruleml:Rel iri="voc:SentencedToImprisonment"/>
<ruleml:Var iri=":person"/>
<ruleml:Var iri=":conviction"/>
</ruleml:Atom>
</ruleml:Neg>
<ruleml:Atom>
<ruleml:Rel iri="vocImprisonmentLess30Months"/>
<ruleml:Var keyref="#person"/>
<ruleml:Var keyref="#conviction"/>
</ruleml:0r>
<ruleml:Atom>
<ruleml:Rel iri="voc:waitingPeriodEnded"/>
<ruleml:Var keyref="#conviction"/>
<ruleml:Var keyref="#person"/>
</ruleml:Atom>
</ruleml:And>
</ruleml:if>
<ruleml:then>
<ruleml:Atom>
<ruleml:Rel iri="voc:convictionIsSpent"/>
<ruleml:Var keyref="#conviction"/>
<ruleml:Var keyref="#person"/>
</ruleml:Atom>
</ruleml:then>
</ruleml:Rule>

The rule is translated into the following DDL code:

constitutiveRule (r_85ZM_2b(Conviction, Person),
convictionIsSpent (Conviction, Person)) :-
convictionID(Conviction), personID(Person).
body (r_85ZM_2b(Conviction, Person), (
(disjunction_1(Person, Conviction);
waitingPeriodEnded (Conviction, Persomn))) :-
personID(Person), convictionID(Conviction).

constitutiveRule (r_85ZM_aux1 (Person, Conviction),
disjunction_1(Person, Conviction)) :-
convictionID(Conviction), personID(Person).
body (r_85ZM_auxl (Person, Conviction),
non(sentencedToImprisonment (Person, Conviction))) :-
personID(Person), convictionID(Conviction).

constitutiveRule (r_85ZM_aux2 (Person, Conviction),
disjunction_1(Person, Conviction)) :-
convictionID(Conviction), personID(Person).
body (r_85ZM_aux1 (Person, Conviction),
imprisonmentLess30Months (Person, Conviction) :-
personID(Person), convictionID(Conviction)).

The first step is to create a constitutive rule for the provision. Since the body
of the rule contains a disjunction, we create two auxiliary rules to capture the
disjuncts.

The next example is a prescriptive rule, for which we consider Section
85ZP(1)(a):

23

(1) Subject to Division 6, but despite any other Commonwealth law or any State law or
Territory law, where, under section 85ZR, a person is, in particular circumstances
or for a particular purpose, to be taken never to have been convicted of an offence:
(a) the person is not required, in those circumstances or for that purpose, to

disclose the fact that the person was charged with, or convicted of, the offence;

The application of Section 85ZP depends on the notion of pardon or wrongful
conviction, which are defined in Section 85ZR. The meaning of Section 85ZP(1)
is that if a person has been pardoned for a conviction, or has been wrongly
convicted, then the person is permitted to not disclose the conviction or the

charge. The provision can be represented in LegalRuleML as follows:

<lrml:PrescriptiveStatement key="ps_85ZP_1la">
<ruleml:Rule key="r_85ZP_1la">
<lrml:hasStrength>
<lrml:DefeasibleStrength iri="lov:defeasible"/>
</1lrml:hasStrength>
<ruleml:if>
<ruleml:0r>
<ruleml:Atom>
<ruleml:Rel iri="voc:pardon"/>
<ruleml:Var iri=":conviction"/>
<ruleml:Var iri=":person"/>
</ruleml:Atom>
<ruleml:Atom>
<ruleml:Rel iri="voc:wronglyConvicted"/>
<ruleml:Var keyref="#conviction"/>
<ruleml:Var keyref="#person"/>
</ruleml:O0r>
</ruleml:if>
<ruleml:then>
<ruleml:And>
<lrml:Permission>
<ruleml :Neg>
<ruleml:Atom>
<ruleml:Rel iri="voc:discloseConviction"/>
<ruleml:Var keyref="#person"/>
<ruleml:Var keyref="#conviction"/>
</ruleml:Atom>
</ruleml:Neg>
</lrml:Permission>
<lrml:Permission>
<ruleml:Neg>
<ruleml:Atom>
<ruleml:Rel iri="voc:discloseCharge"/>
<ruleml:Var keyref="#person"/>
<ruleml:Var keyref="#conviction"/>
</ruleml:Atom>
</ruleml:Neg>
</1lrml:Permission>
</ruleml:And>
</ruleml:then>
</ruleml:Rule>

The rule is translated into the following DDL code:

permissiveRule (r_85ZP_1la(Conviction, Person),
(non(discloseConviction(Person, Conviction));

24

non(discloseCharge (Person, Conviction))) :-
convictionID(Conviction), personID(Person).
body (r_85ZP_1a(Conviction, Person),
pardonOrWronglyConvicted (Person, Conviction)) :-
convictionID(Conviction), personID(Person).

constitutiveRule (r_85ZP_aux1l (Person, Conviction),
pardonOrWronglyConvicted (Person, Conviction)) :-
convictionID(Conviction), personID(Person).
body (r_85ZP_auxl (Person, Conviction),
pardon(Conviction, Person)) :-
convictionID(Conviction), personID(Person).

constitutiveRule (r_85ZP_aux2 (Person, Conviction),
pardonOrWronglyConvicted (Person, Conviction)) :-
convictionID(Conviction), personID(Person).
body (r_85ZP_aux2 (Person, Conviction),
wronglyConvicted(Conviction, Person)) :-
convictionID(Conviction), personID(Person).

Here we have a prescriptive rule where the if part contains a disjunction of
literals, and the then part a conjunction of permissions. Accordingly, we create a
single permissive rule in DDL, where the head of the rule contains the conjunction
of the permissions. Since the body contains a disjunction, we create two auxiliary
constitutive rules to capture the disjuncts.

Once a set of rules has been translated into DDL, we can use the DDL
implementation to reason with the rules. For example, we can check if a certain
obligation is in force, or if a certain action is permitted. To this end we need to
provide the facts describing a specific case. For example, we can consider the
following facts:

fact (date0fBirth(john ,2000-01-01)).

fact (dateOfConviction(shoplifting, john, 2017-10-10)).
fact (non(SentencedToImprisonment (john, shoplifting)))
fact (currentDate (2024-11-18)).

The above facts state that John was born on January 1, 2000, he was convicted
for shoplifting on October 10, 2017, he was a minor at the time of the conviction,
and was not sentenced to imprisonment. The date of the case is November 18,
2024. Based on the above facts, we can check if John is obliged to disclose the
conviction. The output of executing the DDL program with the above facts is:

defeasible(spentConviction(shoplifting, john))

defeasible (minorAtConviction(john, shoplifting, 2017-10-10))
defeasible(fiveYearElapsed(john, shoplifting, 2017-10-10))
defeasible(waitingPeriodEnded (shoplifting, john))
permitted(non(discloseConviction(john, shoplifting)))
permitted (non(discloseCharge (john, shoplifting)))

This means that the conviction is spent, and John is permitted to not disclose
the conviction or the charge. The conviction is spent since the waiting period
has ended (5 years from the date of conviction since John was a minor at the
time of conviction).

25

6 Related Work and Summary

While the LegalRuleML standard has been proposed some years ago, there are
only a few works on the implementation of parsers from LegalRuleML to specific
logics. The lack of parsers limits the use of LegalRuleML as an interchange
format for legal norms. Accordingly, LegalRuleML encodings must be manually
translated into the target logic, or the encoding is created for a specific logic
(see, for example, [16]), preventing interoperability. A few parsers have been
proposed. [12] presented a parser from LegalRuleML to DDL. However, the
parser is propositional, while our parser supports variables and constants. [18]
shows how to translate (a fragment) of LegalRuleML to TPTP formalism for
automated theorem proving.

In this paper we presented a parser from LegalRuleML to Defeasible Deontic
Logic, specifically to an ASP implementation of the logic. We have illustrated its
use with a case study based on the Australian Spent Conviction scheme. The
methodology presented in the paper can be used to represent and reason with
legal norms encoded in LegalRuleML. The current version of the parser has
some limitations on the format (conjunctions or conjunctions of disjunctions).
However, there are no technical difficulties in extending to full expressivity,
though from a practical point of view the current version is sufficient to represent
most legal norms (while possible, multiple nested conjunctions and disjunctions
are not particularly common in legal texts). Future work includes the extension
of the parser to cover a larger fragment of LegalRuleML, and a proper empirical
evaluation of the efficiency of the translations.

Acknowledgements

This project is conducted with the support of the European Commission funds
within ERC HyperModeLex. Grant agreement ID: 101055185.

References

1. Athan, T., Governatori, G., Paschke, A., Palmirani, M., Wyner, A.: LegalRuleML:
Design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reason-
ing Web. Web Logic Rules, pp. 151-188. No. 9203 in LNCS, Springer (2015).
https://doi.org/10.1007/978-3-319-21768-0'6

2. Batsakis, S., Baryannis, G., Governatori, G., Ilias, T., Antoniou, G.: Legal rep-
resentation and reasoning in practice: A critical comparison. In: Palmirani, M.
(ed.) Legal Knowledge and Information Systems. pp. 31-40. IOS Press (2018).
https://doi.org/10.3233/978-1-61499-935-5-31

3. Boley, H., Tabet, S., Wagner, G.: Design rationale of ruleml: A markup language
for semantic web rules. In: Proceedings of the First International Semantic Web
Conference (ISWC 2002). Sardinia, Italy (2002)

4. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming
at a glance. Communications of the ACM 54(12), 92-103 (2011).
https://doi.org/10.1145/2043174.2043195

26

10.

11.

12.

13.

14.

15.

16.

17.

18.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan &
Claypool Publishers (2012). https://doi.org/10.1007,/978-3-031-01561-8
Governatori, G.: An ASP implementation of defeasible deontic logic. Kiinstliche
Intelligenz 38, 79-88 (2024). https://doi.org/10.1007/s13218-024-00854-9
Governatori, G.: Weak permission is not well-founded, grounded and stable (2024),
https://arxiv.org/abs/2411.10624

Governatori, G., Casanovas, P., de Koker, L.: On the formal representation of the
australian spent conviction scheme. In: Gutiérrez Basulto, V., Kliegr, T., Soylu, A.,
Giese, M., Roman, D. (eds.) Rules and Reasoning. LNCS, vol. 12173, pp. 177-185.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-57977-7'14

Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. Journal of Philosophical Logic 42(6), 799-829
(2013). https://doi.org/10.1007/s10992-013-9295-1

Governatori, G., Rotolo, A.: Deontic argumentation. In: Proceedings of DEON 2025
(2025). https://doi.org/10.2139/ssrn.5779102

Governatori, G., Rotolo, A., Sartor, G.: Logic and the law: Philosophical foundations,
deontics, and defeasible reasoning. In: Gabbay, D.M., Horty, J., Parent, X., van der
Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and Normative
Reasoning, vol. 2, pp. 655-760. College Publications, London (2021)

Lam, H., Hashmi, M.: Enabling reasoning with legalruleml. Theory Practice of Logic
Programming 19(1), 1-26 (2019). https://doi.org/10.1017/S1471068418000339
Mohun, J., Roberts, A.: Cracking the code: Rulemaking for humans and ma-
chines. OECD working papers on public governance, OECD, Paris, France (2020).
https://doi.org/10.1787/3afe6bab-en

Morris, J.: Spreadsheets for legal reasoning: the continued promise of declarative
logic programming in law. Master of laws thesis, University of Alberta, Alberta
(2020)

Palmirani, M., Governatori, G., Athan, T., Boley, H., Paschke, A., Wyner, A.:
LegalRuleML core specification version 1.0. OASIS Committee Specification 2,
OASIS (2020), https://docs.oasis-open.org/legalruleml/legalruleml-cor
e-spec/v1.0/cs02/legalruleml-core-spec-vi.0-cs02.html

Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini,
G.: Formalizing GDPR provisions in reified I/O logic: The DAPRECO knowl-
edge base. Journal of Logic Language and Information 29(4), 401-449 (2020).
https://doi.org/10.1007/S10849-019-09309-Z

Robaldo, L., Batsakis, S., Calegari, R., Calimeri, F., Fujita, M., Governatori, G.,
Morelli, M.C., Pacenza, F., Pisano, G., Satoh, K., Tachmazidis, 1., Zangari, J.:
Compliance checking on first-order knowledge with conflicting and compensatory
norms. a comparison among currently available technologies. Artificial Intelligence
and Law 32(2), 505-555 (2024). https://doi.org/10.1007/s10506-023-09360-z
Steen, A., Fuenmayor, D.: Bridging between legalruleml and TPTP for automated
normative reasoning. In: Governatori, G., Turhan, A. (eds.) Rules and Reasoning -
6th International Joint Conference on Rules and Reasoning, RuleML+RR 2022.
Lecture Notes in Computer Science, vol. 13752, pp. 244-260. Springer (2022).
https://doi.org/10.1007/978-3-031-21541-4“'16

27

Catch the Platypus! Negated Conditionals as a
Challenge for Machine Translation from Natural
Language into Logical Formalisms using
Large Language Models

Bianca, Steﬁ‘esl [0009—0001—9784—8942] and DiOgO Sasd61112 [0000—0002—6504—9812]

! Saarland Informatics Campus, Chair of Legal Informatics, Saarland University,
Campus Ab5.4, 66123 Saarbriicken, Germany
bianca.steffes@uni-saarland.de
2 Department for E-Governance, University for Continuing Education Krems,
Dr.-Karl-Dorrekt-Strafe 30, 3500 Krems an der Donau, Austria
diogo.sasdelli@donau-uni.ac.at

Abstract. One of the most promising applications of large language
models in the legal domain concerns the automated conversion of natu-
ral language legal texts into logical formalisms, i.e., automated formali-
sation. Major challenges to these approaches emerge from the semantic
fuzziness of natural language, which leads to sentences that are particu-
larly difficult to formalise — we call these sentences “platypus sentences”.
For example, the natural negation of a sentence in natural language may
have different, context-dependent meanings, which often do not corre-
spond to the logical negation of a respective formalisation of said sen-
tence. In other words, natural negations and formalised negations of-
ten diverge from one another. This problem is further intensified when
natural language conditionals (i.e., negated “if...then...” sentences) are
negated. The paper at hand investigates how current large language mod-
els (GPT-5, Llama and LogicLinguist) deal with automated formalisa-
tion of negated conditionals. Our results indicate that these systems still
cannot reliably deliver correct formalisations, although results can be
enhanced, e.g., by prompt engineering.

Keywords: Machine Translation - Formalisation - Conditionals - Mate-
rial Implication - Natural Language - Logic - Negation - Legal Al - Large
Language Models (LLMs).

1 Introduction

Many applications in the wide area of LegalTech — in particular those related
to automated compliance — require an adequate formal representation of legal
norms, mostly by means of some logical formalism like deontic logic, predicate
logic or directly through programming languages (cf., e.g., [7], [10], [18]). For
example, to comply with traffic rules — and to be able to reliably verify this
compliance —, an autonomous vehicle should include some compliance checking

28

mechanism containing a formal representation of the respective traffic rules.
However, formalising legal norms can be a rather laborious task, involving many
steps and requiring cooperation among specialists of various disciplines [27].
Hence, legal tech in general would enormously benefit from approaches that
could at least partially automate the process of formalising legal norms.

Large language models (LLMs) offer a convenient method for translating
natural language texts into logical formalisms, i.e., a method for automated
formalisation. With an adequate prompt, entire arguments in natural language
can be quickly translated into a logical formalism. However, depending on the
specific scenario, the quality of these translations may vary substantially. For
example, translations into more complicated logical formalisms (e.g., systems of
reified modal logic, i.e., systems combining modalities with quantification theory)
tend to be more prone to errors than translations into simpler formalisms such
as propositional logic. A further, at least equally challenging problem lies in the
complexity of the input language, i.e., natural language.

The paper at hand introduces the notion of “platypus sentences” — i.e., sen-
tences which, due to the intrinsic ambiguity and context-dependence of natural
language, might lead to errors when formalising them, especially when auto-
mated methods are employed — and investigates how LLMs perform when given
the task of formalising dialogues containing a specific kind of such sentences,
namely negated conditionals. Section 2 first briefly discusses related work on
logical formalisms for legal norms, on methodologies for formalising legal norms,
and on machine translation from natural language into logical formalisms, in
particular when LLMs are employed and especially in the context of legal texts.
Section 3 then presents the employed methodology, including a brief discussion
of platypus sentences and a description of four dialogues developed to test how
LLMs fare when formalising such sentences. Test results are presented in Sec-
tion 4 and discussed in Section 5. Section 6 concludes and refers to future work.
Overall, our results indicate that current LLMs are unable to provide reliable
formalisations of platypus sentences.

2 Related Work

Logical formalisms for normative language in general and for the law in particular
have been developed based on modern mathematical logic and related approaches
since the 1920s (for systematic and historic overviews of these developments,
cf., e.g., [22], [5], [16], [26]). These rather theoretical knowledge representation
methods are sometimes also implemented, e.g., within programming languages
such as PROLOG [30] and PROLEG [28], or within theorem provers [15], [31].
Specific challenges for the formalisation of natural language emerging within
the legal domain have been investigated since the origins of modern logic of
norms. This includes so-called paradozes of deontic logic (ctf., e.g., [16], [8]) and
more general problems related to the semantic ambiguity of legal language. For-
malisation methodologies for dealing with these challenges have been intensively
investigated since the 1970s and 1980s by pioneers of legal informatics, e.g., by

29

Ilmar Tammelo [32], Leo Reisinger [24] and Laymen Allen [1]. The problems
discussed in the paper at hand are directly inspired by previous work by Ron
Klinger [11]. More recent approaches focus on the challenge of identifying legal
norms beyond written legislation (e.g., norms derived from legal precedents) [3],
on combining manual and automated methods to enhance the efficiency of gen-
erated formalisations [33], and on using legal visualisation methods to improve
interdisciplinary communication among lawyers, logicians, computer scientists
and engineers [27].

Previous research has analysed the general viability of machine translation
from natural language reasoning into logical formalisms [2], including approaches
based on LLMs [36], [25]. LogicLinguist, for example, is a specialised model for
translating natural language statements into first-order logic [37]. In particular,
the capability of such systems to detect logical fallacies has been analysed, with
some results indicating that LLMs generally perform rather poorly on these tasks
[9], while better results can be achieved by more streamlined systems adopting
neurosymbolic approaches [13]. In the legal domain, machine translation method-
ologies using LLMs have been developed for outputs in PROLEG [19] and in PROLOG
[38], the latter particularly stressing the value of also employing controlled nat-
ural languages (CNL) [35], [21], [12] as an intermediary step between natural
language and logic.

While considerable previous research on the translation of natural language
into logical formalisms is available, there is still little work on translation para-
doxes emerging from natural language ambiguities. Even LOGIC [9], a data
set especially designed for logical fallacy detection, mainly focusses on fallacies
based on logically incorrect inferences (e.g., ad populum fallacies like “Everyone
should like coffee: 95% of teachers do!”). Current research is lacking an analysis
of the translation of natural language sentences which are logically consistent,
but ambiguous in their translation into logical formalisms.

3 Methodology

In this section, we first introduce the notion of “platypus sentences”, i.e., natu-
ral language sentences which are particularly difficult to formalise due to their
semantic ambiguity (Section 3.1). Then, we describe short natural language di-
alogues containing platypus sentences consisting of negated natural language
conditionals. Although all these sentences have the same syntactic structure,
they have fundamentally different meanings, so that their proper formalisations
in propositional logic strongly differ from one another. To test the capabilities
of current LLMs with respect to formalising these sentences, we select different
models to prompt for translating these dialogues into logical formulae (Sec-
tion 3.3). Finally, since this task, as indicated by previous related work [9], is
to be considered as a challenging task, we decide to use different prompts to
thoroughly grasp the models’ capabilities (Section 3.4).

30

3.1 Platypus sentences

Ideally, formal logic should correspond to Leibniz’ notion of a characteristica
universalis, i.e., a universal system of symbols capable of univocally represent-
ing every conceivable object, so that concepts and relations among these objects
could be mapped to sets of ordered n-tuples among the respective symbols (for
details, cf., e.g., [14], [29]). As a characteristica universalis, formal logic is gen-
erally not context-dependent: the meaning of logical symbols does not change
depending on the logical formulae in which they occur. In this sense, semantics is
embedded within syntax. This is, of course, not the case with natural language,
which is rich in ambiguities, synonyms, homonyms, idioms, metaphors, figures
of speech, etc.

This semantic discrepancy between natural language and logical formalisms
is the source of many logical riddles, paradoxes, paralogisms and jokes. It is
the root of odd deductions such as “all thieves are people; therefore: all good
thieves are good people” and of “self-annihilating sentences” like “I am a firm be-
liever in optimism; because if you don’t have optimism, what else is there?” (for
this and similar sentences cf., e.g., Saul Gorn’s famous Compendium of Rarely
Used Cliches [6]). Beyond serving as a source for intellectual entertainment, this
semantic ambiguity of natural language can also lead to formalisation errors,
especially when automated machine translation is employed. A proper formal-
isation should, for example, distinguish between the property of “being a cup
of tea” in a sentence such as “this is a cup of coffee, not a cup of tea” and in a
sentence such as “as a lawyer, formal logic is not my cup of tea”. This distinction,
however, presupposes an adequate consideration of the context in which these
sentences are employed — a consequence of the fact that natural language is not
context-independent and therefore not a lingua characteristica in the sense of
Leibniz.

Inspired by the egg-laying, duck-billed, beaver-tailed, venomous, semiaquatic
monotreme mammal, we call such context-dependent natural language sentences,
which, due to their semantic ambiguity, could lead to formalisation errors (in
particular when machine translation is used), platypus sentences. The class of
platypus sentences is a wide, rather heterogenous class, which, as such, allows
for several further sub-classifications. It is nonetheless relevant to analyse these
sentences as a whole. Among them are sentences containing ambiguous properties
(e.g., “being a cup of tea” or being “good”) and sentences based on figurative
language, but also sentences building on implicit assumptions derived from the
specific context in which they appear (including, but not limited to, sentences
with pronouns or relative adverbs such as “yesterday” or “behind”).

Platypus sentences emerge not only from ambiguous names, adjectives, ad-
verbs and other individually meaningful terms (i.e., from so-called categorems),
but also from connectors, conjunctions etc. (i.e., from so-called syncategorems),
which are meaningless on their own. For example, a particularly rich source of
platypus sentences are conditionals, i.e., sentences with an “if...then...” struc-
ture. These sentences encompass various different semantics, e.g., the notion
of material or strict implication, of causality, of conditional norms (sometimes

31

called “commitment” [34]), etc. This semantic ambiguity is all the more inten-
sified when combining conditionals with negations, a further good syncategore-
matic source of platypus sentences. In our current investigation, we focus on
syncategorematic platypus sentences. For this reason, the dialogues we prepare
for testing include platypus sentences based on negated conditionals.

3.2 Dialogues

Drawing inspiration from previous related work, we develop four different di-
alogues containing platypus sentences consisting of negated conditionals, each
leading to a different formalisation in propositional logic. The dialogue structure
is important, because they provide the necessary context required to determining
the concrete meaning of the platypus sentences.

Dialogue 1: The unwanted poem
Bob: It is Eve’s birthday; you think if I write him a poem, he will be
happy?
Alice: No, of course not!
Bob: Why not?

Alice: Eve hates poems.

The first dialogue contains the natural language conditional question of whether
Eve will be happy (Q) if Bob writes Eve a poem (P). As a general thesis, this
conditional could, in principle, be formalised as a material implication, i.e., by
the formula P — Q). However, in the particular discursive context of the dialogue,
Alice’s negative answer does not merely correspond to a logical negation of this
formula (i.e., to the formula —(P — @)). Instead, she claims that Bob writing
Eve a poem would actually lead to the opposite result from what Bob originally
intended, i.e., Eve would not be happy; after all, he does not like poems. In other
words, Alice’s negative answer does not correspond to the negation of a material
implication, but to a material implication with the same premise, but negated
conclusion. The correct logical formula should therefore be P — —Q.

Dialogue 2: The counsel’s dilemma
Attorney: I do recognize that my client was at the scene of the crime.
However, does being at the crime scene imply guilt?
Judge: No, I do not think so.
Attorney: In other words: it is not the case that: ‘if my client was at the
crime scene, then he is guilty’?
Judge: T agree.

Attorney: Then, it follows logically that my client is innocent.

32

The second dialogue shows a hypothetical discussion between an attorney and
a judge. It traces back to a paper by Ron Klinger [11] and is centered arround
a proposed conditional relationship between a person being at the scene of a
crime (P) and that person to be guilty of the crime committed at the crime
scene (). Again, as a general thesis, this could, in principle, be formalised by
the material implication P — @. In the dialogue, the attorney tries to exploit the
fact that the negation of this material implication (i.e., =(P — @)) is logically
equivalent to the conjunction P A =@ to argue for the innocence of her client.
However, in the specific context of this dialogue, the judge’s denial of the natural
language conditional does not amount to stating the logical negation of the
general thesis (i.e., to claiming the negated material implication ~(P — Q)).
Instead, the judge is merely stating that the general thesis is not being accepted,
without committing to any verifunctional relationship between P and Q. In
other words, the negation amounts to claiming that the propositions involved
are, ceteris paribus, logically independent from one another. Thus, the most
adequate formalisation of the judge’s denial of the natural language conditional
(if indeed any is required at all) would be the tautological formula (P A Q) V
(=P AQ)V (P A-Q)V (=P A—=Q),? which, as such, is irrelevant for the rest of
the argument proposed by the attorney.

Dialogue 3: Tweety, the penguin
Alice: My friend’s dog was barking at my bird Tweetie yesterday, and
Tweetie was very scared.
Bob: Oh, why did it not just fly away?
Alice: Tweety cannot fly!
Bob: Oh, I thought if Tweety is a bird, then it must be able to fly?

Alice: No, this is not true! Tweety is a penguin!

The third dialogue picks up the classic example of Tweety, the penguin (intro-
duced by J. Pearl [23]), and is based on the natural language conditional of
whether Tweety’s “birdness” (its property of being a bird (P)), implies it being
able to fly (). Once again, as a general thesis, this conditional could, in princi-
ple, be formalised by the material implication P — @. In this case, however, the
negation of the natural language conditional is indeed adequately represented by
the negation of a material implication: since Tweety is indeed both a flightless
penguin and a bird at the same time, Tweety is an adequate counter-example
to the general thesis expressed by P — @. Thus, the proper formalisation of
Alice’s negation of the natural language conditional is =(P — Q). In theory,
this dialogue should be easier to formalise than the previous ones, because, in
this case, the negation of the natural language conditional actually corresponds
to the logical negation of a material implication, i.e., the formalisation that syn-

3 This formula basically states that any combination of truth-values for P and Q is
satisfiable, i.e., they can be both true or both false or one of them can be true while
the other is false.

33

tactically most closely resembles the structure of the platypus-sentence. In this
sense, this dialogue (and the next one, which, as described below, is based on
the same structure as this one), can be taken as a control test.

Dialogue 4: The mysterious platypus

Alice: Yesterday at the zoo I saw a platypus! It is a mammal that lays

eggs!
Bob: But if it’s a mammal, it can’t lay eggs, can it?
Alice: No, that‘s not true!

The last dialogue is a variant of the previous dialogue and addresses the con-
ditional of whether a platypus, being a mammal (P), is not able to lay eggs
(=Q). Like in the previous dialogue, the correct formalisation for the negation
of this conditional is a negated material implication, albeit here with a negated
consequence, i.e., =(P — —=Q). We choose to include this variant of the previous
dialogue to assess whether the LLMs’ likely previous information on the famous
Tweety problem would manifest itself in the quality of the results delivered,
the expectation being that, if results’ quality indeed diverge, the models should
perform better with Dialogue 3 than with Dialogue 4.

3.3 Models

To grasp the capabilities of current state of the art LLMs in translating these
dialogues to propositional logic, we perform tests on three different LLMs. As the
most well-known and widely used LLM we chose ChatGPT for the first model.
We use GPT-5, which is a GPT version promoted to be especially well-suited for
reasoning tasks [20]. As the second model, we use Llama 3.3 [17] — another well-
known, widely used model competing with ChatGPT. The last model we use is
LogicLinguist, which is specialised for translating natural language statements
into first-order logic [37]. Although it also employs GPT-4o for chat interactions,
it uses Z8 Theorem Prover for logic solving. We interacted with all of these
models via their online chat interfaces.

3.4 Prompts

We use two different prompts to evaluate the models’ capabilities to translate
the chosen dialogues to logical formulae.

The first prompt (Appendix A) is a simple prompt only telling the models
to extract logical formulae for propositional logic for the given dialogue. This
prompt is meant for evaluating a naive approach users might take when trying
to convert natural language to logical formalisms. Users might want a swift reply
without a lot of prompt engineering to get results for their task.

The second prompt (Appendix B) is devised to help the models find the
possible pitfalls in translating the given dialogues. The difficulty of translating a
negated conditional is pointed out to the models so it can be taken into account.

34

Additionally, the models are tasked with checking the validity of the generated
formulae for these negated implications to test whether the models can properly
identify the specific difficulties in the dialogues.

4 Results

We now describe in detail how the models translated each dialogue to logical
formulae. Overall, the tested models returned results of varying quality when
prompted with the dialogues and prompts described above. Furthermore, models
tended to perform better when the extended prompt was used. An overview of
the results is provided in Table 1.

Table 1. Formalisation results for tested models; correct results in blue bold font.

Prompt GPT-5 Llama LogicLinguist
Dialogue 1 simple | =(P —- Q) —-(QA-Q) —(P— Q)
extended] P —--Q —(P— Q) P—-Q
)
)

Dialogue 2 simple | (P — Q) (P — Q)
extended| =(P — Q) - -(P = Q)

Dialogue 3 simple | =(P — Q) -Q -P
extended| -(P - Q) -(P—-Q) —-(P—Q)

Dialogue 4 simple ﬁ(P — ﬁQ) ﬁ(P — ﬁQ) ﬁ(P — ﬁQ)
extended|=(P — -Q) =(P — -Q) —(P — -Q)

4.1 Dialogue 1: The unwanted poem

For the simple prompt, none of the models was able to generate the correct
result (P — —@Q). GPT-5 and LogicLinguist both formalised the negated con-
ditional as =(P — @), while Llama rather oddly translated it to the tautology
—(Q A—=Q). When using the extended prompt, Llama still failed to correctly for-
malise the platypus-sentence in the dialogue, translating it to =(P — @). With
the extended prompt, the other two models correctly identified three possible
formalisations for the negated natural language conditional — including the cor-
rect solution. Both also correctly concluded that, among the options, P — —Q
is the most fitting translation for the platypus-sentence in this dialogue.

4.2 Dialogue 2: The counsel’s dilemma

The platypus-sentence in the second dialogue was not formalised correctly by any
model for any prompt. All models derived =(P — @), which is not the correct
translation. However, GPT-5 and LogigLinguist (which, we recall, employs GPT-
40) noted that the judge’s negation of the natural language conditional would

35

not, from a pragmatic point of view, amount to stating ~(P — @), which would
thus hinder the attorney from validly deducing —@). While this is indeed the
proper reasoning that should lead to the correct formalisation, the systems were
unable to deliver it. This could be explained either by (1) the fact that the
formalisation is trivial for the argument; (2) the fact that the formalisation bears
almost no resemblance to the respective sentence; (3) the fact that the dialogue,
through the attorney’s final claim, might be taken as stressing the acceptance of
—(P — Q) by the judge. Overall, the systems were unable to adequately grasp
the absurdity of the attorney’s argument.

4.3 Dialogue 3: Tweety, the penguin

For this dialogue, only GPT-5 returned the correct translation =(P — @) when
using the simple prompt. LogicLinguist rather oddly negated only the premise
(=P), while Llama negated the consequence (—@)), which comes close to the
correct answer (we recall that —(P — Q) is equivalent to P A —Q)). When using
the extended prompt, all three models translated the platypus-sentence in the
dialogue correctly and gave a proper explanation for this formalisation. While all
models derived the formula based on the background knowledge that penguins
are birds and that penguins cannot fly, only GPT-5 rather briefly referred to the
problem as a known problem by calling it a “classic”.

4.4 Dialogue 4: The mysterious platypus

For the previous dialogue, which contains a more well-known version of the
same underlying problem, Llama and LogicLinguist failed when using the sim-
ple prompt. In contrast, for this dialogue, all models returned the correct result
(i.e., =(P — —Q)) with all prompts. Only Llama showed a slight inaccuracy
when using the simple prompt by being incosistent with its usage of symbols.
More precisely, it formalised “mamals cannot lay eggs” sometimes as) and some-
times as =@, and thus suggested —(P —) as a formalisation for the negated
conditional, although it made clear that it had taken @ to mean “mammals can-
not lay eggs”. These results subvert our expectations, as we had assumed that
models would fare better when formalising Dialogue 3 because of it dealing with
the widely known Tweety problem.

5 Discussion

Overall, among the three models, GPT-5 and LogicLinguist (which, we recall,
employs GPT-40) performed noticeably better than Llama, which was only able
to deliver correct results for Dialogues 3 and 4. As described above, these tasks
can be seen as easier tasks, since the correct formalisation very closely resembles
the syntactical structure of the respective platypus-sentence.

As expected, the extended prompt consistently leads to better results. This
is promising, because the extended prompt is still general in the sense that it

36

does not contain any specific information on the respective dialogues. This shows
that it is possible to get better results using more detailed prompts even without
having to address concrete details of specific cases.

The fact that no performance advantage could be observed when comparing
the results for Dialogues 3 and 4 is interesting. It indicates that, for some reason,
previous information on the Tweety problem, which the systems are likely to have
had easy access to, did not play any significant role in the formalisation. Indeed,
one can conjecture whether this information could be counterproductive, as the
Tweety problem is actually related to a different formalisation problem — namely
that of defeasible reasoning —, which, however, does not play any significant role
in the formalisation of Dialogue 3. This can be observed in GPT-5’s results
with the extended prompt, in which it is stated that this is a “classic where a
counterexample to a universal implication shows up”.

This issue is further highlighted by the fact that the reasoning presented by
the models, while often leading to the correct results, was not, in its entirety,
coherent. This is most clear in the results delivered by LogicLinguist, which,
for both Dialogues 1 and 4, starts its answer by stressing that the dialogue
illustrates that one ought not to confuse the negation of an implication with
another implication. This is only true for Dialogue 4, not for Dialogue 1 in
which, in fact, the negation of the conditional does correspond to a “different
implication” (i.e., an implication with same premise, but different conclusion).
Incidentally, this underlying problem of confusing the negation of a conditional
with another conditional is at the core of the famous Barbershop Paradox, a
material implication paradox formulated by Lewis Carroll at the end of the 19t®
Century [4].

This incoherence in the underlying reasoning displayed by the systems could
be the cause of the odd results delivered by Llama (Dialogues 1 and 3) and
by LogicLinguist (Dialogue 3) when using the simple prompt. Moreover, these
results indicate that merely providing more information to the systems might
not lead to better results, as the information may have the effect of misleading
the systems away from the right formalisation.

6 Conclusion

Translating natural language to logical formulae is a challenging task for LLMs.
In this paper, we showed that there are some kinds of sentences which may be
especially hard to translate to logical formulae (“platypus sentences”). Inspecting
one type of such difficult sentences — negated conditionals — we tested current
state of the art LLMs’ capabilities in translating these sentences to logical for-
mulae in propositional logic. Our experiments showed that using only a simple
prompt often results in incorrect translations, while even a more intricate prompt
does not guarantee a correct solution.

As platypus sentences are a legitimate difficulty when translating natural
language to logical formulae, current and future systems devised for such a pur-
pose should be evaluated on such sentences to gauge their capabilities. Further

37

research is needed to analyse the performance of state of the art LLMs when
confronted with other types of platypus sentences. Additionally, given the small
number of examples addressed in this paper, more examples which may vary in
length or complexity need to be considered for further investigations.

Overall, the fact that the models largely failed to deliver proper results in
the most difficult cases of Dialogues 1 and 2 — with all three systems failing in
the case of Dialogue 2 and Llama and LogicLinguist failing even in the easier
Dialogues 3 and 4 with the simple prompt — indicates that LLM-based machine
formalisation is still far from being a reliable source for adequate formalisations
of natural language, especially when ambiguous sentences are involved. Hence,
if they are to ever catch the platypus, LLMs ought better start putting their
shoulder to the wheel — ideally without losing time searching for a wheel or
trying to develop an actual shoulder.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Allen, L.: Formalizing hohfeldian analysis to clarify the multiple senses of ’legal
right’: A powerful lens for the electronic age. S. Cal. L. Rev. 48 pp. 428-487 (1974)

2. Angeli, G., Manning, C.D.: NaturalLLl: Natural logic inference for common sense
reasoning. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
pp. 534-545. Association for Computational Linguistics, Doha, Qatar (Oct 2014).
https://doi.org/10.3115/v1/D14-1059, https://aclanthology.org/D14-1059/

3. Borges, G., Wiist, C., Sasdelli, D., Margvelashvili, S., Klier-Ringle, S.: Making
the implicit explicit: The potential of case law analysis for the formalization of
legal norms. In: Borges, G., Satoh, K., Schweighofer, E. (eds.) Proceedings of the
International Workshop on Methodologies for Translating Legal Norms into Formal
Representations (LN2FR 2022) in association with 35th International Conference
on Legal Knowledge and Information Systems (JURIX 2022). pp. 66—75 (2023)

4. Carroll, L.: A logical paradox. Mind 3(11), 436-438 (1894)

5. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.):
Handbook of Deontic Logic and Normative Systems, Vol 1. College Publications,
London, UK (2013)

6. Gorn, S.: Self-annihilating sentences: Saul gorn’s compendium of
rarely used cliches. Tech. rep., University of Pennsylvania (1992),
https://repository.upenn.edu/entities /publication /3758e6d1-f02b-4b65-9615-
6946fbeded12

7. Governatori, G., Rotolo, A.: How do agents comply with norms? In: 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intel-
ligent Agent Technology. vol. 3, pp. 488—491 (2009). https://doi.org/10.1109/WI-
TAT.2009.332

8. Hilpinen, R., McNamara, P.: Deontic logic: A historical survey and introduction.
In: Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.)
Handbook of Deontic Logic and Normative Systems, Vol 1, pp. 3-136. College
Publications, London, UK (2013)

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Jin, Z., Lalwani, A., Vaidhya, T., Shen, X., Ding, Y., Lyu, Z., Sachan, M., Mihalcea,
R., Schoelkopf, B.: Logical fallacy detection. In: Goldberg, Y., Kozareva, Z., Zhang,
Y. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2022.
pp- 7180-7198. Association for Computational Linguistics, Abu Dhabi, United
Arab Emirates (Dec 2022). https://doi.org/10.18653/v1/2022.findings-emnlp.532,
https://aclanthology.org/2022.findings-emnlp.532/

Kampik, T., Mansour, A., Boissier, O., Kirrane, S., Padget, J., Payne, T.R., Singh,
M.P., Tamma, V., Zimmermann, A.: Governance of autonomous agents on the web:
Challenges and opportunities. ACM Trans. Internet Technol. 22(4) (Nov 2022),
https://doi.org/10.1145/3507910

Klinger, R.: The paradox of counter-conditional and its dissolution. Jurimetrics
Journal 11(4), 189-193 (1971), http://www.jstor.org/stable/29761216

Kowalski, R., Datoo, A.: Logical english meets legal english for swaps
and derivatives. Artificial Intelligence and Law 30(2), 163-197 (Jun 2022),
https://doi.org/10.1007/s10506-021-09295-3

Lalwani, A., Kim, T., Chopra, L., Hahn, C., Jin, Z., Sachan, M.: Autoformalizing
natural language to first-order logic: A case study in logical fallacy detection (2025),
https://arxiv.org/abs/2405.02318

Lenzen, W.: Leibniz and the calculus ratiocinator. Philosophy of Engineering
and Technology 30, 47 — 78 (2018). https://doi.org/10.1007/978-3-319-93779-3 4,
cited by: 5

Libal, T., Steen, A.: Nai: The normative reasoner. In: Proceedings of the Sev-
enteenth International Conference on Artificial Intelligence and Law. p. 262-263.
ICAIL ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3322640.3326721

McNamara, P., Van De Putte, F.: Deontic Logic. In: Zalta, E.N.; Nodelman, U.
(eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stan-
ford University, Fall 2022 edn. (2022)

Meta Al: Llama 3.3 model cards and prompt formats (2025),
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3 3/,
accessed: 2025-10-30

Mowbray, A., Chung, P., Greenleaf, G.: Representing legislative rules as code:
Reducing the problems of ‘scaling up’. Computer Law & Security Review
48, 105772 (2023). https://doi.org/https://doi.org/10.1016/j.clsr.2022.105772,
https://www.sciencedirect.com /science/article/pii/S0267364922001157

Nguyen, H.T., Wachara, F., Nishino, F., Satoh, K.: A multi-step approach in trans-
lating natural language into logical formula. In: Francesconi, E., Borges, G., Sorge,
C. (eds.) Legal knowledge and information systems. Frontiers in Artificial Intelli-
gence and Applications, IOS Press, Amsterdam and Berlin and Washington, D. C
(2022). https://doi.org/10.3233 /FATA220453

OpenAl: Introducing gpt-5 (2025), https://openai.com/index/introducing-gpt-5/,
accessed: 2025-10-30

Pace, G.J., Rosner, M.: A controlled language for the specification of contracts.
In: Fuchs, N.E. (ed.) Controlled Natural Language. pp. 226-245. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

Parent, X., van der Torre, L.: Introduction to Deontic Logic and Normative Sys-
tems. College Publications, Rickmansworth, UK (2018)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

39

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

Reisinger, L.: Probleme der symbolisierung und formalisierung im recht. In: Win-
kler, G. (ed.) Rechtstheorie und Rechtsinformatik, pp. 22-50. Springer, Vienna,
Austria (1975)

Ryu, H., Kim, G., Lee, H.S., Yang, E.: Divide and translate: Compositional first-
order logic translation and verification for complex logical reasoning. arXiv preprint
arXiv:2410.08047 (2024)

Sasdelli, D.: Konnen Maschinen Rechtsfille entscheiden? Felix Meiner Verlag
(2025). https://doi.org/10.28937/978-3-7873-4900-5

Sasdelli, D., Steffes, B., Herrmann, M., Chitashvili, M., Wist, C.: A
normal form for representing legal norms and its visualisation through
normative diagrams. Annual International Conference on Digital Gov-
ernment Research 26 (Jun 2025). https://doi.org/10.59490/dgo.2025.1036,
https://proceedings.open.tudelft.nl/DGO2025/article/view /1036

Satoh, K.: PROLEG: Practical legal reasoning system. In: Warren, D.S., Dahl,
V., Eiter, T., Hermenegildo, M.V., Kowalski, R., Rossi, F. (eds.) Prolog:
The Next 50 Years, pp. 277-283. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-35254-6 23

Schneider, M.: Leibniz’ konzeption der "characteristica universalis" zwischen 1677
und 1690. Revue Internationale de Philosophie 48(188 (2)), 213-236 (1994),
http://www.jstor.org/stable/23949527

Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The british nationality act as a logic program. Commun. ACM 29(5), 370-386
(May 1986), https://doi.org/10.1145/5689.5920

Steen, A., Benzmiiller, C.: The higher-order prover leo-iii. In: Galmiche, D., Schulz,
S., Sebastiani, R. (eds.) Automated Reasoning. pp. 108-116. Springer International
Publishing, Cham (2018)

Tammelo, I.: Modern Logic in the Service of Law. Springer, Vienna, Austria (1978)

Witt, A., Huggins, A., Governatori, G., Buckley, J.: Encoding legislation:
a methodology for enhancing technical validation, legal alignment and in-
terdisciplinarity. Artificial Intelligence and Law 32(2), 293-324 (Jun 2024),
https://doi.org/10.1007/s10506-023-09350-1

von Wright, G.H.. I deontic logic. Mind 60(237), 1-15 (1951).
https://doi.org/10.1093/mind /1x.237.1

Wyner, A., Angelov, K., Barzdins, G., Damljanovic, D., Davis, B., Fuchs, N.,
Hoefler, S., Jones, K., Kaljurand, K., Kuhn, T., Luts, M., Pool, J., Rosner, M.,
Schwitter, R., Sowa, J.: On controlled natural languages: Properties and prospects.
In: Fuchs, N.E. (ed.) Controlled Natural Language. pp. 281-289. Springer, Berlin
(2010)

Yang, Y., Xiong, S., Payani, A., Shareghi, E., Fekri, F.: Harnessing the power of
large language models for natural language to first-order logic translation. arXiv
preprint arXiv:2305.15541 (2023)

YesChat.ai: Logic linguist — logic translation tool. https://www.yeschat.ai/gpts-
9t5570yNbN2-Logic-Linguist (2025), accessed: 2025-10-31

Zin, M., Borges, G., Satoh, K., Fungwacharakorn, W.: Towards machine-
readable traffic laws: Formalizing traffic rules into prolog using llms. In:
Maranhao, J. (ed.) Proceedings of ICAIL2025, pp. 317-326. ACM (2025).
https://doi.org/10.1145/3769126.3769204

40

A Simple Prompt

Extract logical formulae (propositional logic) from the following dialogue.

B Extended Prompt

Extract logical formulae (propositional logic) from the following dialogue. Pay
special attention to the negations of implications. Check their validity very care-
fully.

41

When Legal Articles Resist Formalisation

: 1[0000—0003—3165—4376 £2[0000—0001—9052— 6978
Ludi van Leeuwen!! []7

|, Tadeusz Zbiegien
1[0000—0001—6887—1687]

and Cor Steging
! Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence,
University of Groningen
2 Department of Legal Theory, Jagiellonian University

Abstract. Formal representations of legal text have long been central
to research in Al and Law. In this study, we examine the process of for-
malising legal articles through a co-design approach conducted with a
legal expert. Using the ANGELIC framework, we explore the formalisa-
tion of Japanese Civil Code articles and analyse where and why some
articles ‘resist’ unambiguous formalisation. Through this analysis, we
identify four lessons learnt about the limits of formalizations. These con-
cern the inherent complexity and dynamic nature of the law, the concept
of model granularity, and interpretive ambiguity in legal text. We hope
these lessons can inform future efforts to design, apply, and evaluate
formalisation methods in the legal domain.

Keywords: Legal formalisation - Al and Law - Knowledge representa-
tion - Legal reasoning - Limitations of formal models - Symbolic Al.

1 Introduction

There is a long-standing tradition of modelling legal knowledge in formal repre-
sentations in the Al & Law domain. Such approaches include rule-based logics,
case-based structures, ontologies, and argumentation frameworks [28,2,32,30].
Such representations can be used to reason with, to support domain understand-
ing, and to enable automatic decision-making. Recently, while machine learning
approaches are dominant, there has been a surge in neuro-symbolic approaches
that combine data-driven Al techniques with formal representations [22]. This
paper reflects on the practice of formalising legal articles. Drawing on concrete
examples, we highlight situations in which the process of formalisation encoun-
ters resistance, revealing limitations, ambiguities, and structural challenges in-
herent to legal text.

In this paper, we report on the co-design of formal representations of legal
articles, conducted with a legal expert, aiming to model a diverse set of provi-
sions from the Japanese Civil Code. While several articles could be represented
successfully, others proved difficult or nearly impossible to formalise unambigu-
ously under our initial assumptions. This paper distills the lessons learned from
these challenges and highlights design aspects that require explicit attention to
produce usable formal models.

42

2 Background

Formalising law can be defined in terms of translation [29]: it is a process of
translating legal provisions and norms into a chosen formal representation and
has a long and extensive tradition in legal scholarship [26,24]. At the same time,
legal provisions are known for the number of problems they generate. It seems
that in many cases it is the specificity of legal language itself that makes it a
rewarding subject of research. This includes in particular works on the issues of
vagueness [12,23], defeasibility [16,8], context sensitivity [20] or reasoning based
on values [6]. These issues have been reflected in a number of modern works
that attempt to harness these properties in computational form. Previous work
in this domain concerned, among others, the defeasibility of legal reasoning [7],
application of fuzzy [10] and temporal logic [14].

2.1 ANGELIC

In our study, we represent the legal articles as ANGELIC Domain Models (ADMs).
The ANGELIC methodology, later updated to ANGELIC II, is an approach for
representing and reasoning about legal domains [1,3]. It has been used to model a
variety of domains, such as US Trade Secrets [5] and the European Convention on
Human Rights [9,4]. The ADMs that model legal articles are based on Abstract
Dialectical Frameworks (ADFs), a generalisation of argumentation frameworks
capable of modelling argumentation [11,19]. In these models, legal articles are
organised hierarchically: the root node represents the article’s verdict, which is
determined by a set of issues, each in turn defined by a set of factors. Factors
are legally relevant fact patterns that may or may not apply to a given case [2].
In ANGELIC, factors are divided into two types. Baselevel factors form the
leaves of the hierarchy and are assigned a truth value (True’, False’, or ‘Un-
known’) for each case, which is referred to as factor ascription. Abstract factors
capture intermediary legal concepts and are defined by other abstract or base-
level factors. The values of abstract factors, as well as issues and the verdict, are
calculated using accept and reject conditions along with a default value, applying
logical operators (AND, OR, NOT) evaluated under three-valued logic [25].

2.2 Japanese Civil Code

In this study, we focus on modelling a selection of articles from the Japanese Civil
Code, a comprehensive body of law governing private legal relations in Japan,
including contracts, property, family, and obligations. The Civil Code is highly
structured, with articles generally short and narrowly scoped, making it poten-
tially suitable for formalisation. Our work is inspired in part by previous work in
the COLIEE competition [15,31], a legal competition that provides benchmarks
for legal information extraction and entailment tasks using the Japanese Civil
Code.

43

For this study, we model the legal articles directly as a verdict determined
by a set of factors, without explicitly representing intermediate issues. This sim-
plification reflects the small scope of most articles. Despite this, modelling even
these apparently straightforward provisions revealed challenges related to inter-
pretive ambiguities, contextual dependencies and the interplay of multiple legal
concepts, highlighting the limits of formalisation even in well-defined domains.

3 Constructing ADMs of Legal Articles

3.1 Overview of the approach

Our approach was based on a co-design process in collaboration with a legal ex-
pert. Together, we constructed ADMs for a selection of articles from the Japanese
Civil Code. The co-design process involved iterative interpretation, where we dis-
cussed how each article could be represented in the ADM structure and how its
legal concepts could be formalised as factors and logical relations. The goal was
not necessarily to produce complete models but more so to examine how the
process of formalisation unfolds when technical and legal perspectives interact.
Through this collaboration, we explored both the strengths and the practical
limits of formalising legal text.

3.2 Effective formalisations

Our approach proved to be effective for a number of articles. To illustrate a
successful example, Figure 1 presents the ADM corresponding to Article 698 (see
Figure 1a for the text of the article). The verdict, shown in yellow in Figure 1b,
concerns whether the manager is liable to compensate for damages. This outcome
is determined through the ascription of the base-level factors (blue), which in
turn define the values of the abstract factors (green). Together, these factors,
and the accept and reject conditions, yield the final value of the verdict.

We found that ADMs can be constructed most successfully for articles with
a clear and logical structure that corresponds to the verdict. The methodology
in these cases can be considered effective in the sense that it enabled the iden-
tification of the article’s relevant characteristics and factors, yielding an ADM
that can determine the verdict concerning it.

We have however encountered a number of informative edge cases. Those
cases allowed us to draw several lessons concerning not so much the specific
formalisation method used, but more broadly the general problem of formalising
legal articles as such. We dive deeper into some of these edge cases in the next
sections.

44

If a manager engages in benevolent intervention in another’s business
in order to allow a principal to escape imminent danger to the
principal’s person, reputation, or property, the manager is not
liable to compensate for damage resulting from this unless the
manager has acted in bad faith or with gross negligence.

(a) Article 698 of the Japanese Civil Code.

Verdict:
com The manager is liable to
compensate for damages
ot e Abstract factors:

Reject: esc A ben A -exh

esc The manager’s actions aimed to al-
low the principal to escape
imminent danger

erh The manager exhibited gross
negligence or acted in bad faith

e o op n oxh Baselevel factors:

ben The manager’s intervention was

benevolent

dmg There were damages resulting from
the intervention

per The actions aimed to allow the es-
cape of imminent danger to
the person

Default False rep The actions aimed to allow the es-

Reject: - cape of imminent danger to repu-

tation

pro The actions aimed to allow the es-
cape of imminent danger to prop-
erty

neg The manager exhibited gross

(b) ADM of Article 698 negligence

fth The manager acted in bad faith
(¢) Verdict and factors of the ADM

Fig. 1: Article 698 of the Japanese Civil Code (a) alongside its ANGELIC Domain
Model (b) and its verdict and factors (c).

3.3 Determining the verdict

In the case of Article 698 (Figure la), we determined that the verdict should
be whether the manager is liable to compensate for damages. This answers the
question, ‘should the manager compensate for the damages?’. Although this ap-
pears to be the most straightforward question to ask, a legal article can invite

45

several different questions. In such cases, it becomes more difficult to determine
what the verdict of the ADM should represent.

We illustrate this concept using Article 593 of the Japanese Civil Code, shown
in Figure 2a. Through a co-design session with the legal expert, we developed the
ADM shown in Figure 2, where the verdict was defined as whether the loan for
use is effective. This formulation allows reasoning about cases where the central
question is: ‘is the loan for use effective?’.

However, other questions can be asked about this article, in which the con-
structed ADM cannot be applied. For example, two bar exam questions concern-
ing Article 593 are shown in Figure 3, where examinees must determine whether
a legal entailment exists between Article 593 and the statements in Figure 3.
This task corresponds to Task 4 of the COLIEE competition [15].

When it comes to the first statement (H30-24-U), the implied question is:
‘May B demand compensation for damages due to default based on the loan
for use contract from A?’. In the second statement statement (R1-23-3), the im-
plied question is: ‘Is a loan for use contract effective when not made in writing?’.
Strictly speaking, neither of these two questions can be answered directly ascrib-
ing factors to the ADM in Figure 2, as the questions do not match the question
we had in mind for the verdict node when designing the ADM. To answer these
questions, we would need a different ADM, tailored to those specific questions.

3.4 Complexity, dynamics and temporal effects

The ADM of Article 593 (Figure 2) also illustrates issues with regards to the
symbolic structure and the affordances needed to represent legal articles. For
example, we see that the modal verb promise is used. Additionally, the article
contains reference to temporal aspects, such as a thing being returned after a
contract is terminated, and the contract being terminated after the other party
uses and makes profit of the thing. Furthermore, one needs to perform entity
disambiguation to resolve references to the borrowed thing, party and other party.
Hence, in this example alone, a formalism needs to account for logical connectives
as well as modal, temporal and entity-level distinctions.

While ADMs are designed to correctly represent the structure of the logical
connectors, they are in principle not designed to represent these other distinc-
tions explicitly using deontic or temporal logic. Choosing a formalism hence
means picking a (sub)set of relevant attributes of legal reasoning to represent,
and leaving the rest implicit.

It is also the case that we often cannot reasonably answer legal questions
only based on a single article. Instead, we need to read the article in the context
of bigger network of interrelated articles, and consider law as a complex and
dynamic system [21,17,18]. For example, to answer questions in Figure 3, the
ADM in Figure 2 alone is insufficient and we would require additional articles
to perform the legal reasoning necessary. Strictly speaking, in order for our for-
malisation to be able to answer legal questions adequately, it would have to take
into account the fact that it is rare for a given legal question to be answered on
the basis of a single provision, usually, a number of different regulations must be

46

A loan for use becomes effective if one of the parties promises to
deliver a certain thing, and the other party promises to return
the thing when the contract is terminated after the other party
gratuitously uses and makes profit of the borrowed thing.

(a) Article 593 of the Japanese Civil Code.

Verdict:
eff The loan for use is effective
Abstract factors:
oth The other party promises to return
the thing when the contract is ter-
minated after [the other party] gra-
tuitously uses and makes profit of
the borrowed thing.
ter The contract is terminated after
the other party gratuitously uses
and makes a profit from the bor-
rowed thing.
Baselevel factors:
Default: False del One of the parties promised to de-
Q:l?:cﬂf: gra a pro liver a certain thing
prm The other party promises to return
the borrowed thing when the con-
tract is terminated
prf The other party makes a profit
from the borrowed thing
gra The other party gratuitously uses
the borrowed thing

(c¢) Verdict and factors of the ADM

Default: False
Accept: del A oth

Default: False
Accept: pro A ter
Reject: -

(b) ADM of Article 593

Fig. 2: Article 593 of the Japanese Civil Code (a) along with its ANGELIC
Domain Model (b) and its verdict and factors (c).

taken into account, which combine into different structures depending on how
the question is asked.

3.5 Model granularity

In the ADM of Article 593, the verdict is determined by two factors, one of which
in turn are determined by sub-factors, and one of those by sub-sub-factors as
shown in Figure 2. This raises a broader methodological question about the
appropriate level of detail when decomposing factors in ADMs. For example,
should factor oth be further broken down into its constituent sub-factors, or is it
sufficient to treat it as a single baselevel factor? This leads to the open issue of

47

H30-24-U: A who is the owner of a building and B made a loan agreement
where B borrows the building for free only while A is working abroad, and then,
however, A made a loan contract with third party C, and transferred the
building. In such case, B may not demand compensation for damages due to
default based on the loan for use contract from A.

R1-23-3: No contract of loan for use shall be effective unless it is made in
writing.

Fig. 3: Two bar exam questions concerning Article 593.

model granularity. On the one hand, there is a natural inclination to subdivide
the model into as many explicit conditions as possible. For example, in case law
when determining whether a vague term such as ‘gratuitous usage’ applies. On
the other hand, excessive granularity risks undermining clarity: the model may
become unreadable, and each additional node, particularly when not directly
supported by the text of the provision, and increases the risk of falling into the
trap of explicitly encoding certain modelling choices.

3.6 Model uncertainty and scope ambiguity

In terms of ADMs, decision trees or graphs in general, model uncertainty in a
legal context will refer to the uncertainty arising from the possibility of creating
multiple (equally or unequally) justifiable edges with various logical operators
assigned between the nodes representing the conditions. Simply put, it refers to
a situation where it is possible to construct similarly justified models of the same
article or legal norm resulting from it, which differ in their logical structure. Such
model uncertainty can be caused by scope ambiguity, where logical operators like
‘and’ or ‘or’ are used without clear specification of their range, allowing multiple
plausible ways to structure the logical relationships.

To illustrate this concept, we show an artificial article based on Article 178a
of the Polish Criminal Code in Figure 4a 3. In this article, a scope ambiguity
is evident due to the use of or’ and and’ without clarity on the range of these
connectors. This ambiguity permits at least two different ADMSs, each repre-
senting one possible reading. Both readings are shown in Figures 4c and 4d.
While seemingly superficial, this example illustrates model uncertainty due to
scope ambiguity clearly, and reflects the kinds of interpretative disagreements
that frequently arise in legal analysis. Importantly, this is not a classic problem
of linguistic ambiguity and the scope of meaning of individual concepts. The
uncertainty does not arise at the level of the meaning of individual concepts or

3 This example comes from a webinar held by the Government Legislation Centre
(RCL) on 21 August 2025[27]

48

Verdict:

pun Subject to punishment?

Baselevel factors:

veh Drives a vehile

alc Under influence of alcohol

tox Under influence of intoxicating
substances
Poses a threat

Anyone who drives a vehicle
under the influence of alcohol
or intoxicating substances and
poses a threat is subject to
punishment.

(a) Artificial article based on Article
178a of the Polish Criminal Code. (b) Verdict and factors of the ADMs

Default: False Default: False
Accept: veh A (alc v (tox thr)) Accept: veh A (alc v tox) A thr
Reject: - Reject: -
+
A OR
(c) First ADM interpretation) Second ADM interpretation

Fig. 4: Artificial article based on Article 178a of the Polish Criminal Code (A)
alongside two different ANGELIC Domain Models the (¢ & d) and its verdict
and factors (b).

the scope of their meaning, but at the level of the relationships between these
concepts. Because of this, formalising articles can also help expose such scope
ambiguity, which can be useful for legal scholars and personnel.

3.7 Artificially generated formalisations

Since the advent of Large Language Models (LLMs), research has investigated
the possibility of automatically extracting formal representations from legal
texts [33]. In a previous study, we found that automatically generated ADMs
were often ineffective [31]. Examining these artificial formalisations does further
highlight the observations we have made during our co-design process with a
human legal expert.

For example, when prompting ChatGPT to formalise an ADM of the article
in Figure 4a, the LLM shows a persistent preference (10 out of 10 runs) for the
second reading (see Figure 4d). Even with additional prompting, ChatGPT does
not generate the first reading as shown in Figure 4c. We also see that the LLM
takes a less granular approach, as it collapses the ‘or’ statement into one baselevel

49

Verdict:

pun Is the driver subject to punishment?

Baselevel factors:

alctox Is the driver under the influence of alcohol or
intoxicating substances?

thr Does the driver pose a threat to others or
public safety?

Default: False
Accept: alctox A thr
Reject: -

(a) GPT-generated ADM (b) Verdict and factors of the ADM
Fig.5: The ANGELIC Domain Models of the article from Figure 4a as generated
by ChatGPT (a) and its generated verdict and factors (b).

factor The structure of the generated ADMs is consistent across runs, with only
minor paraphrasing of the text within factors, as would be expected from a
language model. The consistent preference of ChatGPT for the second reading
implies that it does not expose the scope ambiguity of this legal article, which
can be harmful if the formalisation is used to reason with by legal professionals.

4 Lessons and Design Implications

In our analysis, we used the process of formalisation through ADMs as a pro-
totypical example to illustrate broader challenges in representing legal articles
formally. In many cases, the ADM structure enables the construction of models
that can be used to reason about legal questions in a structured and inter-
pretable manner. However, several fundamental challenges remain. From our
observations, we distil several key lessons and corresponding design implications
for future work

4.1 Lesson 1: No single formalisation fits all legal questions

As discussed in Section 3.3, no single ADM or formalisation can capture all
possible questions that may arise from a given article. Although the content
of legal articles often appears to imply a specific question they are meant to
address, the reality is more complex. In practice, the same article may give rise
to multiple legitimate questions, each requiring a distinct formalisation. The
same article can also often also be a building block to answer other questions
relating to other articles.

4.2 Lesson 2: Law is complex, temporal and dynamic

In Section 3.4, we showed that although legal provisions are written in texts that
at first appear clearly structured and stable, in reality, the law, the interpretation
of articles, the reconstruction of norms, and the arguments surrounding them are
highly susceptible to change and instability. Following a long-standing tradition

50

in legal theory, we distinguish between an article (or legal provision), under-
stood as an editorial unit of legal text, and the corresponding legal norm, which
describes the structure of an obligation or duty and is reconstructed through
interpretation from one or more provisions. Law is therefore a complex and
dynamic system. Despite a long tradition of formalisation in law, the actual, ef-
fective modelling of these two facts remains a crucial challenge, and future work
is needed that focuses on these temporal and referential aspects of legal norms.

4.3 Lesson 3: Granularity is an explicit design choice

As shown in Section 3.5, the level of detail, or granularity, of a model is an
explicit design choice with significant implications for its structure and effective-
ness. For a formalisation to be effective, however understood, the granularity
of the model must therefore be taken into account. There is always a trade-off
between descriptive accuracy and interpretability. In striving for a more precise
representation, we may lose readability and, consequently, practical applicability.

The appropriate level of granularity depends on the purpose of the formal-
isation. Is the goal to construct an algorithm capable of automating a process
defined by legal norms? Is it to study the nature of legal norms or to model
legal reasoning itself? Or is the aim to optimise performance on a computational
benchmark? In some cases, the purpose may even be exploratory or conceptual.
These questions should precede any formalisation effort, as the intended function
of the model directly determines the depth and structure of its design.

4.4 Lesson 4: A single article can yield multiple valid models

Model uncertainty arises when a single legal article can be represented in multiple
equally justified ways. One source of this uncertainty, as shown in Section 3.6,
is scope ambiguity, where connectors such as and’ or or’ can be interpreted in
different ways, producing distinct ADMs.

Recognising that legal norms are derived from many different sources, that
their meaning may evolve over time, and that the linguistic boundaries of legal
terms are rarely precise, is only a starting point. It should be noted that all these
building blocks can be combined in various ways, none of which should be con-
sidered "the one and only correct” (especially before a decision is made to settle
this type of legal dispute in a given case, and even then we only obtain certainty
ex post in that one case — the decision-making pattern does not necessarily have
to be repeated in subsequent similar or even identical cases, even if there are a
number of legal and procedural safeguards in place to ensure this). It is precisely
this inherent indeterminacy that we refer to as model uncertainty, and it is one
of the features that makes law an especially challenging and intellectually rich
domain. In this context, research addressing uncertainty directly seems to be
warranted. Methods that avoid creating a false (and, in the context of law, dan-
gerous) sense of stability and instead capture the uncertainty intrinsic to legal
reasoning are essential. In particular, research on uncertainty quantification in
legal models appears to be a promising direction.

51

5 Discussion and conclusion

While this study focused primarily on hard cases, we do not want to suggest that
law consists only of such difficult cases subject to varying levels and types of un-
certainty. A legal system in which every interpretation required complex logical
or interpretative operations would be difficult to imagine. In practice, many ar-
ticles and cases are relatively straightforward [13], which enables formalisation
and supports the development of e-government services and the automation of
administrative procedures in many countries. However, it is the edge cases that
provide the most insight into both the formalisation process and the law itself.
While we used the ANGELIC methodology in this study, our aim is not to
evaluate the specific limitations or capabilities of this framework, but rather to
examine the properties of law itself as an object of study. Different formalisation
methods might highlight other issues, but our focus is on the structure of norms
and the relationships between them, rather than on the fulfilment of specific
conditions, which has already received substantial attention.

In this study, we analysed the process of formalising legal provisions through
a co-design approach with a legal expert. Our experience demonstrated that,
while many articles can be effectively formalised, certain provisions resist for-
malisation due to inherent characteristics of law. From these cases, we derived
four key lessons: there is not a single formalisation suitable for every question;
law is complex, temporal, and dynamic; model granularity is an explicit design
choice; and multiple representations of the same article can exist, giving rise to
model uncertainty. We argue that these lessons are broadly applicable and should
inform future research on legal formalisation, guiding both the development of
formal methods and the interpretation of law as a structured domain.

References

1. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.: A methodology for designing
systems to reason with legal cases using abstract dialectical frameworks. Artif. In-
tell. Law 24(1), 1-49 (Mar 2016). https://doi.org/10.1007/s10506-016-9178-1

2. Aleven, V.: Teaching Case-based Argumentation through a Model and Examples.
Ph.D. thesis, University of Pittsburgh (1997)

3. Atkinson, K., Bench-Capon, T.: Angelic ii: An improved methodology for repre-
senting legal domain knowledge. In: Proceedings of the Nineteenth International
Conference on Artificial Intelligence and Law. pp. 12-21. ICAIL 23, Association for
Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/
3594536.3595137

4. Atkinson, K., Collenette, J., Bench-Capon, T., Dzehtsiarou, K.: Practical tools
from formal models: the echr as a case study. In: Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Law. pp. 170-174. ICAIL
’21, Association for Computing Machinery, New York, NY, USA (2021). https:
//doi.org/10.1145/3462757 .3466095

5. Bench-Capon, T., Gordon, T.F.: Implementing a theory of a legal domain. In:
Legal Knowledge and Information Systems, pp. 13-22. IOS Press (2022)

52

https://doi.org/10.1007/s10506-016-9178-1
https://doi.org/10.1007/s10506-016-9178-1
https://doi.org/10.1145/3594536.3595137
https://doi.org/10.1145/3594536.3595137
https://doi.org/10.1145/3594536.3595137
https://doi.org/10.1145/3594536.3595137
https://doi.org/10.1145/3462757.3466095
https://doi.org/10.1145/3462757.3466095
https://doi.org/10.1145/3462757.3466095
https://doi.org/10.1145/3462757.3466095

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bench-Capon, T., Modgil, S.: Norms and value based reasoning: Justifying com-
pliance and violation. Artificial Intelligence and Law 25, 29-64 (2017). https:
//doi.org/10.1007/510506-017-9194-9

Billi, M., Calegari, R., Contissa, G., Lagioia, F., Pisano, G., Sartor, G., Sartor,
G.: Argumentation and defeasible reasoning in the law. J 4(4), 897-914 (2021).
https://doi.org/10.3390/j4040061

Brozek, B.: Law and defeasibility. Revus (23) (2014). https://doi.org/10.4000/
revus.3110

. Collenette, J., Atkinson, K., Bench-Capon, T.: Explainable Al tools for legal rea-

soning about cases: A study on the European Court of Human Rights. Artificial
Intelligence 317, 103861 (2023)

da Costa Pereira, C., Tettamanzi, A.G.B., Liao, B., Malerba, A., Rotolo, A.,
van der Torre, L.: Combining fuzzy logic and formal argumentation for legal in-
terpretation. In: Proceedings of the 16th Edition of the International Conference
on Articial Intelligence and Law. p. 49-58. ICAIL ’17, Association for Comput-
ing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3086512.
3086532

Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321-357 (1995)

Endicott, T.A.O.: Vagueness and legal theory. Legal Theory 3(1), 37-63 (1997).
https://doi.org/10.1017/S135232520000063X

Fischman, J.B.: How many cases are easy? Journal of Legal Analysis 13(1), 595—
656 (2021). https://doi.org/10.1093/jla/laaa010

Ghari, M.: A formalization of the protagoras court paradox in a temporal logic of
epistemic and normative reasons. Artificial Intelligence and Law 32(2), 325-367
(2024). https://doi.org/10.1007/s10506-023-09351-0

Goebel, R., Kano, Y., Kim, M., Rabelo, J., Satoh, K., Yoshioka, M.: Overview
of Benchmark Datasets and Methods for the Legal Information Extraction/En-
tailment Competition (COLIEE) 2024. In: Suzumura, T., Bono, M. (eds.) New
Frontiers in Artificial Intelligence. pp. 109—124. Springer Nature Singapore, Singa-
pore (2024)

Governatori, G.: An ASP implementation of defeasible deontic logic. Kiinstliche
Intelligenz 38, 79-88 (2024). https://doi.org/10.1007/s13218-024-00854-9
Hage, J., Verheij, B.: The law as a dynamic interconnected system of states of
affairs: a legal top ontology. International Journal of Human-Computer Studies
51(6), 1043-1077 (1999). https://doi.org/10.1006/ijhc.1999.0297

Jones, G.T.: Dynamical jurisprudence: Law as a complex system. Georgia State
University Law Review 24(4) (2012)

Keshavarzi Zafarghandi, A., Verbrugge, R., Verheij, B.: Discussion games for pre-
ferred semantics of abstract dialectical frameworks. In: Kern-Isberner, G., Ogn-
janovié, Z. (eds.) Symbolic and Quantitative Approaches to Reasoning with Un-
certainty. vol. 11726, pp. 62-73. Springer (2019)

Kompa, N.: The role of vagueness and context sensitivity in legal interpreta-
tion. In: Keil, G., Poscher, R. (eds.) Vagueness and Law: Philosophical and Legal
Perspectives. Oxford University Press (2016). https://doi.org/10.1093/acprof:
0s50/9780198782889.003.0010

Moreso, J.J.: Legal dynamics. In: Legal Indeterminacy and Constitutional Inter-
pretation, Law and Philosophy Library, vol. 37, pp. 101-116. Springer, Dordrecht
(1998). https://doi.org/10.1007/978-94-015-9123-2_4

53

https://doi.org/10.1007/s10506-017-9194-9
https://doi.org/10.1007/s10506-017-9194-9
https://doi.org/10.1007/s10506-017-9194-9
https://doi.org/10.1007/s10506-017-9194-9
https://doi.org/10.3390/j4040061
https://doi.org/10.3390/j4040061
https://doi.org/10.4000/revus.3110
https://doi.org/10.4000/revus.3110
https://doi.org/10.4000/revus.3110
https://doi.org/10.4000/revus.3110
https://doi.org/10.1145/3086512.3086532
https://doi.org/10.1145/3086512.3086532
https://doi.org/10.1145/3086512.3086532
https://doi.org/10.1145/3086512.3086532
https://doi.org/10.1017/S135232520000063X
https://doi.org/10.1017/S135232520000063X
https://doi.org/10.1093/jla/laaa010
https://doi.org/10.1093/jla/laaa010
https://doi.org/10.1007/s10506-023-09351-0
https://doi.org/10.1007/s10506-023-09351-0
https://doi.org/10.1007/s13218-024-00854-9
https://doi.org/10.1007/s13218-024-00854-9
https://doi.org/10.1006/ijhc.1999.0297
https://doi.org/10.1006/ijhc.1999.0297
https://doi.org/10.1093/acprof:oso/9780198782889.003.0010
https://doi.org/10.1093/acprof:oso/9780198782889.003.0010
https://doi.org/10.1093/acprof:oso/9780198782889.003.0010
https://doi.org/10.1093/acprof:oso/9780198782889.003.0010
https://doi.org/10.1007/978-94-015-9123-2_4
https://doi.org/10.1007/978-94-015-9123-2_4

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Mumford, J., Atkinson, K., Bench-Capon, T.: Reasoning with Legal Cases: A Hy-
brid ADF-ML Approach (12 2022). https://doi.org/10.3233/FAIA220452
Poscher, R.: Ambiguity and vagueness in legal interpretation. In: Solan, L.M.,
Tiersma, P.M. (eds.) The Oxford Handbook of Language and Law. Oxford Univer-
sity Press (2012). https://doi.org/10.1093/0xfordhb/9780199572120.013.0010
Prakken, H., Sartor, G.: Law and logic: A review from an argumentation per-
spective. Artificial Intelligence 227, 214-245 (2015). https://doi.org/10.1016/
j.artint.2015.06.005

Priest, G.: Many-valued Logics, p. 456-475. Cambridge Introductions to Philoso-
phy, Cambridge University Press (2008)

Royakkers, L.M.M.: Extending Deontic Logic for the Formalisation of Legal Rules,
Law and Philosophy Library, vol. 36. Springer Science+Business Media Dordrecht,
Dordrecht, 1 edn. (1998). https://doi.org/10.1007/978-94-015-9099-0
Rzadowe Centrum Legislacji: Rola funktoréw prawdziwosciowych w prawidtowym
konstruowaniu przepisow [the role of truth-functional operators in the proper draft-
ing of legal provisions]. Webinarium [Webinar| (Aug 2025), accessed: 7 November
2025

Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shi-
rakawa, K., Takano, C.: Proleg: An implementation of the presupposed ultimate
fact theory of japanese civil code by prolog technology. In: Onada, T., Bekki, D.,
McCready, E. (eds.) New Frontiers in Artificial Intelligence. pp. 153-164. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

Schafer, B.: Formalising law, or the return of the golem. In: Research Handbook on
Law and Technology, chap. 5. Edward Elgar Publishing, Cheltenham, UK (2023).
https://doi.org/10.4337/9781803921327.00012, retrieved November 4, 2025
Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The British Nationality Act as a logic program. Communications of the ACM
29(5), 370-386 (May 1986). https://doi.org/10.1145/5689.5920

Steging, C., van Leeuwen, L.: A hybrid approach to legal textual entailment. In:
Eighteenth International Workshop on Juris-Informatics (JURISIN 2024). Hama-
matsu, Japan (5 2024)

Verheij, B.: Formalizing arguments, rules and cases. In: ICAIL ’17: Proceedings
of the Sixteenth International Conference for Artificial Intelligence and Law. pp.
199-208. ACM, New York, London, United Kingdom (6 2017)

Zin, M.M., Satoh, K., Borges, G.: Leveraging llm for identification and extraction
of normative statements. In: Legal Knowledge and Information Systems, pp. 215—
225. IOS Press (2024)

54

https://doi.org/10.3233/FAIA220452
https://doi.org/10.3233/FAIA220452
https://doi.org/10.1093/oxfordhb/9780199572120.013.0010
https://doi.org/10.1093/oxfordhb/9780199572120.013.0010
https://doi.org/10.1016/j.artint.2015.06.005
https://doi.org/10.1016/j.artint.2015.06.005
https://doi.org/10.1016/j.artint.2015.06.005
https://doi.org/10.1016/j.artint.2015.06.005
https://doi.org/10.1007/978-94-015-9099-0
https://doi.org/10.1007/978-94-015-9099-0
https://doi.org/10.4337/9781803921327.00012
https://doi.org/10.4337/9781803921327.00012
https://doi.org/10.1145/5689.5920
https://doi.org/10.1145/5689.5920

Legal NER: Evaluating the impact of
LLM-Generated Annotations on NER
Performance for Administrative Decisions

0009—0003—8291—8818 2[0000—0002—6317—9453
[I, Samaneh Khoshrou?!]

Johan Wolswinkel! [0000—0001—8404—5027]

Harry Nan'! , and

L Tilburg University, Tilburg Law School, the Netherlands
2 Department of Intelligent Systems, Tilburg School of Humanities and Digital
Sciences

Abstract. Named Entity Recognition (NER) is a widely adopted task
for Information Extraction (IE), but requires high-quality annotations,
which are costly and time-consuming to obtain. Large Language Mod-
els (LLMs) offer a potential solution by generating pseudo-annotations,
yet their reliability in domain-specific legal contexts remains underex-
plored. This study investigates the use of LLM-generated annotations to
expand the training set for supervised NER models. To achieve this, a
dataset of legal entities is constructed annotated by human experts on
a low-resource domain and language, namely Dutch administrative deci-
sions. LLM-generated annotations are generated using a schema-driven
few-shot prompt and evaluated against the human-labeled dataset. Sub-
sequently, two different NER models are trained using three different
sets of training data: human-annotated only, LLM-annotated only, and
a finetuned LLM-annotated NER model with human-annotated data.
The results show that LLM annotations are promising for legal entities
that can be defined explicitly, but are unreliable for legal entities that
require a deeper contextual understanding than what is explicitly stated
in the text or in the prompt. However, finetuning a NER model trained
on LLM-generated labels with human annotations slightly outperforms
models trained on human-annotated data only. Our findings highlight
the potential of hybrid supervision strategies to scale low-resource legal
NER tasks while maintaining human-level accuracy.

Keywords: Named Entity Recognition- Information Extraction- Rela-
tionship Extraction - Large Language Models- Annotation

1 Introduction

Named Entity Recognition (NER) is considered a foundational technique for In-
formation Extraction (IE) [18,20]. By identifying and classifying relevant entities
(e.g. people or dates), NER allows for a structured representation of unstruc-
tured texts. While Large Language Models (LLMs) have already shown promis-
ing results for various tasks in Natural Language Processing (NLP), such as text
classification and question answering, their application on NER and IE tasks re-

55

mains limited, with supervised deep learning methods remaining the most widely
adopted methods for domain-specific tasks [14, 20, 23].

Legal Entity Recognition (LER) specifically deals with the extraction of rel-
evant ‘legal entities’ from legal texts. Unlike domain-agnostic NER tasks that
mostly focus on isolated entities (e.g. names, dates, or locations), these legal en-
tities are determined by the (domain-specific) relationships that characterize the
specific role of an entity. LER is therefore not just a task of identifying (domain-
agnostic) entities (e.g. people), but also of selecting between those entities by
assigning specific capacities (e.g. the person receiving a decision).

Considering legal information extraction in general, transformer-based archi-
tectures have already shown strong multilingual performance for NER [7,31,32].
The success of these supervised NER models, however, typically depends on large
volumes of high-quality annotated data [30]. In many low-resource domains, the
acquisition of such annotations is both costly and labor-intensive. Recent studies
have therefore explored the use of LLMs to generate pseudo-annotations for NER
tasks [3,17,28]. However, since these studies focus primarily on general-purpose
or high-resource NER datasets, they provide limited guidance on how to handle
domain-specific structures and relationships between entities.

In this work, we make two main contributions to the field of legal NLP and
legal information extraction in particular. First, we introduce a new annotated
dataset specifically designed for entity extraction in the low-resource domain of
Dutch administrative decisions.® This dataset provides a valuable benchmark
for research in information extraction from administrative and legal texts, and
addresses a notable gap in available Dutch-language resources.

Second, we investigate the potential of LLMs to generate pseudo-annotations
that can augment and enhance the performance of supervised NER models.
Through a systematic evaluation, we assess both the accuracy of LLM-generated
pseudo-annotations and the resulting improvements in model performance when
these annotations are incorporated into training data. This dual focus offers
insights into how LLMSs can be effectively leveraged to scale low-resource datasets
and to advance hybrid annotation strategies that combine human expertise with
automated labeling.

Specifically, this study addresses two research questions:

— To what extent can LLMs generate accurate pseudo-annotations for unsu-
pervised NER, compared to human-labeled data?

— To what extent does the inclusion of LLM-generated pseudo-annotations im-
prove the performance of supervised NER models?

This study shows that LLMs have the potential to generate a large but unre-
liable set of pseudo-annotations, and the quality of these annotations declines
when labeling requires specialized legal domain knowledge or deeper contextual
understanding. However, augmenting human annotations with LLM-generated
annotations can increase the performance of NER tasks, as it can expand train-
ing coverage by allowing for an effective way of scaling, while preserving the
accuracy and reliability of the human-annotated dataset.

2 Related Work

NER has been considered a core task in structuring legal texts, enabling ap-
plications such as case retrieval, legal analytics, and argument mining [14, 20].

3 GitHub link to the dataset
56

https://github.com/Harry-Nan/legal-ner/tree/main/data

NER methods, particularly transformer-based methods, have been increasingly
applied to low-resource legal domains and underrepresented languages, includ-
ing languages such as Portuguese [31|, German [7]|, and Turkish [32], where
annotated corpora are scarce. Nonetheless, the limited amount of data across
multilingual and domain-specific corpora remains challenging for IE-tasks such
as NER [1]. This holds even more for the related task of Relationship Extraction
(RE), which aims to extract relationships between identified entities [1,24].

Recent work has therefore focused on developing few-shot [28], weakly super-
vised [17], or limited supervision techniques [26] to reduce the reliance on large
annotated datasets while still enabling supervised models to achieve strong and
reliable performance [20,23]. To counter this bottleneck of scarce annotated
datasets, LLMs have been used to reduce the required work needed to obtain
high-quality annotated data. Some studies have applied LLMs to assist legal
researchers by improving annotation efficiency and annotator agreement [11], or
apply hybrid methods to perform IE-tasks directly [16]. Other studies have shown
that LLM-generated annotations, when combined with human annotations, can
achieve human-level performance in domain-specific settings [3,17,24].

Ensuring accuracy and reliability in LLMs requires more than sheer scale, as it
depends critically on the quality of supervision. Recent studies show that models
fine-tuned on human-curated datasets consistently achieve superior, or at least
comparable, performance to those trained solely on LLM-generated labels [15].
Moreover, even a relatively small proportion of human-labeled examples can
improve accuracy and reasoning ability of LLMs [2]. Human-labeled data are
therefore particularly effective in improving correctness, depth of reasoning, and
robustness to ambiguity, while synthetic data such as pseudo-annotations provide
unmatched scalability [12]. Consequently, the most effective strategy is a hybrid
one, where human annotations ensure quality and reliability, and synthetic data
is employed to broaden coverage in a cost-efficient manner.

A common approach to generating annotations through LLMs is to frame
the task as a generative problem, often through question-answering (QA) tech-
niques [23,25]. Research shows that explicit label definitions, fixed output for-
mats and decomposed QA strategies improve NER performance [25]. Addition-
ally, integrating entity extraction with relation extraction has been found to be
effective [24]. Few- and zero-shot prompting techniques have also been applied to
NER [25], showing that LLMs can achieve reliable entity labels in low-resource
settings. However, most research focuses on general-purpose datasets and largely
ignores domain-specific contexts, relationships between entities, and the impact
of pseudo-annotations on supervised NER model performance, as these are of-
ten used to replace human annotations [1,17,20]. But these relationships are
especially of importance in the legal domain, where legal entities derive their
meaning from their specific roles and the relationships that define them.

In the legal domain, texts contain domain-specific characteristics such as spe-
cialized vocabulary, formal syntax, and structured relationships between en-
tities [29]. Adapting transformer-based NER models, such as BERT, through
domain-specific pre-training has been shown to enhance performance in both le-

57

gal classification and LER tasks [6]. To further incorporate domain-specific infor-
mation, some studies have embedded entity relationships directly into prompts,
improving LLM’s performance on NER tasks [24].

In addition, joint NER-RE approaches have been explored. These approaches
combine NER with an RE task, punishing the model for incorrectly identifying
entities or relationships between these entities. Despite the more reliable results
of these joint approaches for RE [9], their effect on NER performance remains
less conclusive: while some studies report modest improvements, particularly in
domains with structural dependencies [21,22], others find little or no advantage
over baseline NER models [9]. This inconsistency highlights a critical gap in un-
derstanding how domain-specific structures and relationships can be effectively
leveraged to advance NER in the legal domain.

In summary, prior research highlights two key challenges: (1) supervised meth-
ods remain dominant for NER but are costly to apply in low-resource legal
domains; and (2) while LLMs offer promising strategies for reducing annota-
tion burden, most work has focused so far on general-purpose datasets rather
than domain-specific (legal) corpora. These gaps underscore the need to investi-
gate whether LLM-generated pseudo-annotations, enriched with domain-specific
relationships, can improve LER performance in legal texts. Our work addresses
these both challenges by evaluating LLM-generated annotations in a low-resource
domain and language, namely a wide variety of Dutch administrative decisions,
and examining the impact of incorporating LLM-generated annotations into two
different supervised NER models.

3 Methodology

Figure 1 shows an overview of the methodology of this paper. Firstly, as described
in section 3.1, a Dutch dataset is created by collecting documents and applying
sentence extraction techniques, whereas a list of relevant legal entities to be
extracted is also defined. Secondly, section 3.2 describes the annotation process,
which resulted in the gold data. Section 3.3 describes how LLMs are applied to
scale up annotated data (LLM annotation), generating silver data, and section
3.4 describes the creation of the NER(-RE) models, and the experimental setup
to understand how LLM-generated annotations influence NER performance.

sec. 3.1 sec. 3.2 sec. 3.4

9
i | Human annotation test set (20%)
Dataset creation
gold data

o Collection NER Models /

L —> NER-RE Models
. Senter\ce sec.3.3
Selection

. Gold
« Legal Entities —| . *
LLM annotation « Silver
silver data « Silver-to-Gold

Fig. 1: Flowchart of the methodology.

58

3.1 Dataset creation

An administrative decision is an order which is not of a general nature, including
rejection of an application for such an order (Algemene wet bestuursrecht, art.
1:3(2)). A similar definition is provided in the Model Rules, although the latter
is more explicit about the constitutive elements of an administrative decision.
In general, an administrative decision is understood as a specific type of admin-
istrative action addressed to one or more individualized persons and adopted
unilaterally by a public authority to determine one or more concrete cases with
a legally binding effect [19]. From these legal definitions, five key entities of ad-
ministrative decisions can be derived which are useful for downstream IE-tasks,
as these five legal entities should be present in every administrative decision,
irrespective of its substance. First, two types of legal subjects [13] are involved
in every administrative decision: (1) a person receiving the decision (‘recipient’),
and (2) a public authority issuing the decision (‘authority’). Next, every decision
has a legally binding effect, thus conferring certain rights or obligations to the
recipient (legal act [13]). In particular, such a legal effect consists of the com-
bination of (3) a legal action (e.g., to grant or to revoke) related to (4) a legal
object (e.g., a license or a fine). Finally, since an administrative decision is taken
unilaterally, it should always be based on (5) a legal basis (competence [13]): a
statutory provision that authorizes the authority to act. While other legal enti-
ties can also be present in certain types of administrative decisions (such as the
type of misconduct in case of a enforcement decision), these five entities should
be present in all types of administrative decisions. Thus, extracting these five
legal entities is essential in terms of generalizability.

To answer the research questions and to ensure generalizable results, a highly
diverse set of administrative decisions (such as permits and sanctions) from
seven different public authorities in the Netherlands is used. All these decisions
are publicly accessible. In total, 20,798 administrative decisions (available in
PDF format) were scraped from the different websites of these public authorities
and were saved in txt-format using pdfplumber where possible. See Table 1 for
dataset statistics from the seven different authorities.

Legal documents such as administrative decisions can be quite long [29], but
the five legal entities identified above are usually present together in only a few
individual sentences in the text. To restrict the task of legal entity recognition
to these few relevant sentences, rule-based methods have been applied. Based
on Dutch law (Algemene wet bestuursrecht) and a qualitative analysis of the
data, combinations of legal action (verbs) and legal object (nouns) pairs have
been defined that consistently and almost exhaustively express the legal effect
of a decision (for example: grant and permit)*. Next, the texts were split into
sentences using SpaCy®, after which regular expressions were applied to identify
whether one of these pairs of legal action and legal object is present in the
sentence. If such a pair was identified, this sentence was stored for subsequent

4 See GitHub for the action-object pairs and their derivation from the Algemene wet
bestuursrecht.
® SpaCy’s pretrained model nl_core news_lg

59

https://www.acm.nl/sites/default/files/old_publication/publicaties/15446_dutch-general-administrative-law-act.pdf
https://www.acm.nl/sites/default/files/old_publication/publicaties/15446_dutch-general-administrative-law-act.pdf
https://github.com/jsvine/pdfplumber
https://github.com/Harry-Nan/legal-ner/tree/main/sentence selection

processing as it might contain one or more of the five legal entities defined above.
A total of 14,793 documents were found that contained this sentence pattern at
least once, which resulted in a total of 38,766 sentences found. See Table 1.
Documents in which no such sentence pattern was found, were not machine
readable, or were not administrative decisions.

Table 1: Overview of sentence extraction and characteristics across authorities.
Found Docs With Total Avg Sent./ Avg Sent./ Mean Tok. Median Tok. Min / Max Tok.

Authority Documents Sentences Sentences Doc (All) Doc (With Sent.) Sent. Len Sent. Len Sent. Len

ACM 4,725 1,764 (37.3%) 10,767 1.19 6.01 31.70 27.0 7/192
ANVS 10,948 9,975 (91.1%) 16,703 1.53 1.67 29.53 29.0 4 /80
DNB 729 317 (43.5%) 2,589 2.85 8.17 31.68 30.0 8 /75
Gemeente Rotterdam 3,791 2,261 (59.6%) 6,702 1.65 2.96 35.17 38.0 18 / 44
KSA 390 239 (61.3%) 1,524 3.90 6.38 29.85 28.0 5/ 76
Provincie Drenthe 74 72 (97.3%) 203 2.74 2.82 16.49 18.0 6 /35
Rijksoverheid 141 138 (97.9%) 278 1.97 2.01 23.39 21.0 7 /65
Total 20,798 14,793 (71.1%) 38,766 1.82 4.00 28.14 25.0 4 /192

3.2 Data annotation

To ensure a diverse set of annotated data, a selection of up to 150 sentences
was made for each public authority. For one specific authority (ACM), even 300
sentences were extracted since its decisions were rich in variety (150 sentences
from enforcement decisions and 150 sentences from permit decisions), whereas
for another authority (Gemeente Rotterdam) only 60 sentences were selected due
to their poor variety. This resulted in a total of 1,101 sentences. After selecting
these sentences, two law students (Bachelors and Masters) annotated the five
legal entities in these sentences (recipient, authority, legal basis, legal object,
and legal action) using Lawnotation. The annotations were based on an annota-
tion protocol® drafted for this project and tested beforehand. One third of the
sentences were annotated by both annotators to measure annotator agreement
between the two annotators, which resulted in an overall Cohen’s Kappa score
of 0.47 (with a raw agreement of 0.78 (recipient), 0.58 (authority), 0.51 (legal
object), 0.46 (legal action), 0.39 (legal basis) for the individual features), indicat-
ing moderate agreement. Most disagreements were due to boundary mismatches
and cases where one annotator labeled a token as belonging to a feature while
the other left it unannotated. The moderate agreement can largely be attributed
to ambiguities in determining whether a sentence expressed the actual operative
part of a decision or merely referred to a hypothetical, past, or future decision.
This indicates limitations in the sentence selection techniques used. Addition-
ally, annotators often differed in judging whether such sentences represented a
binding legal effect or merely explanatory context.

To ensure consistency of the annotated data, a legal expert validated all anno-
tations and adjusted the annotations where necessary (e.g., where disagreement
between annotators was found), thus acting as an (expert) reviewer [4]. The re-
sulting set of annotated data was split in two subsets: 20% of the data served
as test set, while the other 80% served as training data for the NER model.
Table 2 shows the results thereof, demonstrating the amount of entities found
per authority, and the average length of each type of entity in tokens.

6 GitHub link to annotation protocol

60

https://www.acm.nl/nl/publicaties
https://puc.overheid.nl/anvs/
https://www.dnb.nl/en/search-results/?s=beschikking&p=1&t=documents&l=100
https://evenementeninrotterdam.nl/
https://kansspelautoriteit.nl/aanpak-misstanden/sanctiebesluiten/
https://www.provincie.drenthe.nl/loket/subsidieloket/subsidieregister
https://www.rijksoverheid.nl/onderwerpen/staatssteun/documenten
https://www.lawnotation.org/
https://github.com/Harry-Nan/legal-ner

Table 2: Entity counts and mean token length per authority and entity type

Authority Recipient Authority Legal Object Legal Action Legal Basis
ACM (293) 76 / 3.00 105 / 2.96 99 / 1.25 101 / 1.00 58 / 8.24
ANVS (149) 98 / 4.39 3/ 1.00 112 / 1.00 112 / 1.01 4/ 14.00
DNB (149) 31/ 1.55 28 / 1.18 32 /1.88 33 / 1.00 14 / 6.79
G. R’dam (60) 36 / 1.00 36 / 1.00 41 / 1.00 41 / 1.00 30 / 8.53
KSA (150) 28 / 2.25 46 / 3.96 37/ 2.16 37 / 1.00 25 / 6.52
P. Drenthe (150) 71 / 1.00 80 / 1.05 82 / 1.01 82 / 1.00 3/ 5.67
Rijksoverheid (150) 50 / 1.06 64 / 1.09 84 / 1.04 88 / 1.00 22 / 11.32
Overall (1,101) 390 / 2.38 362 / 1.99 487 / 1.21 494 / 1.00 156 / 8.42

3.3 Pseudo-labeling using GPT
GPT-5 was used for this study to expand the training data for the NER model.

Based on recent advances in LLM-based NER, a schema-driven few-shot prompt?
was designed. The prompt is based on recent work for prompt engineering, which
has reconceptualized NER tasks for LLMs as a prompting task. For example,
schema-driven instructions are used to guide the LLM to generate entities in a
structured manner. Ideas from previous studies (see section 2) are implemented
in the prompt by treating the NER task as a structured generation task aligned
with domain-specific definitions, as seen in Table 3. The LLM-generated anno-
tations were evaluated using Precision (P), Recall (R), and F1, by comparing
it to the human-annotated dataset (n=1,101). Additionally, a total of 7,228 ad-
ditional sentences were annotated using the LLM. Table 3 gives an overview of
the prompt structure.

Table 3: Structured overview of the prompt.

Prompt structure |Implementation Idea
Introduction Introduce role of LLM, and frame the task as a|Generative task for
QA-task. entity extraction [25].

Entity descriptions

Normalization

Examples

Entities are defined individually in a schema-
driven way. A legal explanation, with possible re-
lations to other entities is included, with entity
examples.

Explaining rules for normalization (deduplication,
abstain, span/boundary), and show expected out-
put with an example JSON structure.

Provide three real examples.

Schema-driven
prompting [23] and

highlighting entity
relations [24].
Normalization and

fixed output [25].

Few-shot prompting.

3.4 Experimental setup
This study trains two different NER models on three different subsets of data,

which results in six different approaches, as shown in Figure 1. A random 20%
of the human-annotated data was held out as a test set to evaluate each model.
To prevent data leakage, any overlap in sentences between the training and test
sets were removed from the test set, resulting in 184 sentences in the test set.
First, a token-level BERT NER model based on the Dutch BERT variant
(BERTje) [8] was trained on three data subsets. BERTje was chosen because its
Dutch-specific pretraining achieves state-of-the-art results on Dutch NLP tasks,
making it a reliable choice for token-level NER in Dutch legal texts [8]. The model
assigns an entity label to each token using its context-aware representation. A

7 GitHub link to full prompt

61

https://platform.openai.com/docs/models/gpt-5
https://huggingface.co/GroNLP/bert-base-dutch-cased
https://github.com/Harry-Nan/legal-ner/blob/fd3c6b9f82422af610c81f5acb2004f66f615e03/prompt.md

Gold model was trained on the remaining 80% (n==883) of the human-annotated
sentences, of which 20% was used as a validation set. In parallel, a Silver model
was trained on the LLM-generated annotations (n=7,228), of which 20% was
used for validation. Finally, a Silver-to-Gold model was created, by finetuning the
Silver model with human-annotated data, thereby continuing training on human-
annotated data. The dataset was tokenized with the BERTje tokenizer [§].

Next, a more sophisticated NER model was created by combining NER with
RE. To facilitate this, inspired by spERT [9], a span-based joint NER-RE model
was trained, based on BERTje [8]. This model represents candidate spans with
contextual embeddings, labels them as entities, and simultaneously predicts re-
lationships between spans. Since relationships between entities were not anno-
tated explicitly, relationships were constructed automatically by pairing entities
according to a pre-set schema. Four relationship types were defined for this
project based on the legal definitions of administrative decisions (as described in
section 3.1): (1) recipient receives legal object, (2) legal action concerns legal ob-
ject, (3) legal basis authorizes authority, and (4) authority performs legal action.
See Figure 2 for an example of the NER and RE task. The model was trained
with a combined loss function, combining the entity classification loss with the
relationship classification loss. Three datasets were used to train a Gold, Silver
and Silver-to-Gold model, identically to the token-level NER model.

authorizes

L7
De Autoriteit Consument en Markt besluit op grond van_

performs — concerns

—een ontheffing te van de verplichting een

1 receives
netbeheerder aan te wijzen aan Schiphol Nederland B.V. voor het [...].

Fig.2: Example of the NER (highlighted) and RE (red arrows).

All six approaches were evaluated using token-level annotations from the held-
out golden test set (n=184). Precision (P), Recall (R), and F1 were computed
at the token level. The evaluation followed a strict matching criterion, in which
contiguous tokens forming a single entity span were treated as one unit; partial
overlaps between predicted and gold spans were therefore considered incorrect.

4 Results

4.1 LLM pseudo-annotation performance

Table 4 shows the quality of the pseudo-generated annotations by GPT-5, by
comparing LLM-generated annotations with human annotations (n=1,101). High
F1-scores can be observed for the entities of ‘authority’ (F1=0.91) and ‘legal ob-
ject” (F1=0.85). However, for authorities that impose sanctions (ACM, DNB,
KSA), these scores are lower. This can be explained by the more complex na-
ture of sanctioning decisions, which often contain lengthy reasoning before the
relevant operative clause (see also Table 1). In contrast to entitlement decisions
(such as a license or permit), enforcement decisions (such as a fine) often display
the legal object with an adjectival premodifier, an adjective that appears before

62

a noun to modify it (such as: administrative fine, which is also seen in Table 2),
which the LLM failed to capture, suggesting systematic boundary annotation
errors. Nonetheless, the high Fl-scores for ‘authority’ and ‘legal object’ can be
explained by the uniform way in which these entities are defined in legislation,
and because the form of these features is relatively consistent, making it easy
for LLMs to capture these.

Table 4: LLM pseudo-label quality per-authority Precision (P), Recall (R), F1,
and total TP + FP + FN count (#) per entity.

Recipient Authority Legal Object Legal Action Legal Basis

P RF1 # P RF1 # P RF1 #| P R F1 #| P R F1 #
ACM .05 .05 .05 150 .51 .74 .60 178|.36 .90 .51 261|.38 .75 .51 223|.00 .00 .00 59
ANVS .07 .09 .08 213|.60 1.0 .75 5|.80 .98 .88 140|.71 .60 .65 140|.00 .00 .00 6
DNB 17 .07 .09 41].29 .96 .45 93|.01 .03 .01 138|.27 .82 .41 105|.55 .43 48 19
G. R'dam |.69 1.0 .82 52|.66 1.0 .79 55|.68 1.0 .81 60(1.0 .56 .72 41|1.0 .67 .80 30
KSA 13 .11 .12 48].36 .94 .52 12|.23 .81 .36 139|.26 .76 .39 116|.80 .48 .60 28
P. Dre. .96 1.0 .98 74[.94 .99 .96 85|.46 .96 .62 176|.41 .94 .57 194|.00 .00 .00 3
Rijks. .77 .94 .85 64|.80 .95 .87 79|.67 .98 .80 124|.33 .30 .31 141|1.0 .05 .09 22
Combined|.49 .45 .47 561[.90 .93 .91 387(.80 .90 .85 588|.73 .67 .70 605|.85 .29 .43 142

The model shows moderate performance for the entity of ‘legal action’ (F1=0.70),
which, despite being formally defined in legislation and expert practice, exhibit
considerable variation in form and often depend on the procedural context. Addi-
tionally, verbs that do not capture the specific type of legal action at issue (such
as ‘deciding’) were wrongly captured by the LLM, indicating shortcomings in
the understanding of the entity ‘legal action’ by LLMs.

In contrast, the entities of ‘recipient’ and ‘legal basis’ yield lower scores (recip-
ient: F1 = 0.47; legal basis: F1 = 0.43). These entities are typically longer, more
heterogeneous in form, and more complex from a legal-linguistic perspective,
which makes them difficult for the LLM to identify consistently. Performance
for ‘recipient’ is higher among authorities that frequently issue their decisions in
a letter format (e.g., Provincie Drenthe, Rijksoverheid, Gemeente Rotterdam),
where the recipient is often expressed through short and direct referential tokens
such as ‘you’, as also reflected in Table 2. Interestingly, precision scores for legal
basis are relatively high (P=0.85) compared to its recall (R=0.29), suggesting
that while LLMs can correctly capture clearly identifiable patterns, they fail to
identify many less explicit instances or relevant legal provisions that it has not
seen before. This highlights a limitation of LLMs: while they are consistent in
recognizing clear patterns and expressions, they may struggle with entities that
they have not seen before in the prompt, require contextual inference, or require
common-sense understanding beyond what is written.

4.2 NER(-RE) performance
Table 5 shows the results of the token-based NER and span-based joint NER-

RE models, with precision, recall and F1-scores for each of the three subsets of
annotated data: Gold (human annotations only), Silver (LLM annotations only),
and Silver-to-Gold (Silver model finetuned on human annotations).®

8 GitHub link to more detailed results per authority.

63

https://github.com/Harry-Nan/legal-ner/tree/fd3c6b9f82422af610c81f5acb2004f66f615e03/results

Table 5: Per-label performance (P, R, F1) of three approaches for both BERT-
based NER and spERT-based joint NER-RE models.
Label NER Joint NER-RE

Gold Silver |S.-to-Gold|| Gold Silver |S.-to-Gold
P R F1|P RF1|P R F1||P R F1|P R F1| P R F1
Recipient .77 .86 .82|.22 .34 .26|.83 .92 .87 ||1.0 .97 .98].95 .32 .48] 1.0 .98 .99
Authority |.80 .90 .85|.58 .84 .69(.83 .90 .86 (/.98 .93 .95|.98 .91 .95| 1.0 .97 .99
Legal object|.97 .85 .91|.43 .85 .57|.95 .88 .91 (/.96 .94 .95|.99 .85 .91| .99 .98 .98
Legal action|.96 .89 .92|.41 .61 .49|.96 .89 .92 (/.96 .94 .95|.96 .92 .94| 1.0 1.0 1.0
Legal basis |.76 .91 .83|.53 .25 .34|.83 .94 .88 ||.94 .91 .92|1.0 .41 .58| 1.0 .94 .97
Micro avg |.87 .88 .87|.41 .63 .50(.89 .90 .89 ||.97 .94 .95(.98 .74 .84|1.00 .98 .99

These results show that both Gold models achieve high micro average F1-scores
(NER: 0.87; NER-RE: 0.95), providing a strong baseline and demonstrating good
performance on human annotations. In contrast, the Silver models, trained ex-
clusively on LLM-generated pseudo-labels, perform worse (NER: 0.50; NER-RE:
0.84), largely due to inconsistencies in LLM annotations for complex or implicit
entities such as ‘recipient’ and ‘legal basis’. Importantly, when the Silver models
are subsequently fine-tuned with human annotations (Silver-to-Gold), their per-
formance surpasses the gold baselines, improving the micro average F1-scores by
0.02 and 0.04 respectively for the NER and NER-RE models. This finding indi-
cates that combining imperfect but large-scale LLM-generated annotations with
smaller sets of human annotations can effectively expand coverage and improve
generalization in low-resource legal NER tasks.

Across datasets of different public authorities, performance remains highest for
legal entities with standardized and explicit phrasing, such as public authority,
legal object, and legal action, while entities that are more context-dependent
or variable in expression, particularly recipient and legal basis, remain challeng-
ing. Similarly as described in section 4.1, standardized decisions (e.g., letters)
achieve better results compared to decisions that are less standardized. These
observations confirm that model performance depends strongly on both the lin-
guistic structure of the texts and the degree of standardization in the way how
an administrative decision is drafted.

Interestingly, the Silver NER-RE model performs better than expected given
the quality of its LLM-generated training labels (Table 4). This indicates that
the model may be able to generalize beyond the noise present in the pseudo-
labels. The joint NER-RE architecture likely encourages structurally coherent
predictions by linking entities through predefined relationships. In addition, the
large volume of pseudo-labeled data increases the model’s exposure to diverse
linguistic contexts, effectively broadening its training coverage. These aspects
suggest that the model benefits from implicit regularization and denoising effects,
which may explain the high precision and F1-scores observed despite the noisy
supervision.

64

5 Discussion

5.1 Pseudo-annotations by LLM

As seen in Table 4 and as demonstrated in section 4, LLMs are consistent in
identifying features with clear patterns and little linguistic variety, but incon-
sistently capture features that have a lot of linguistic variety and may require
more contextual understanding or common sense.

To illustrate this, legal entities such as the legal object and the public authority
are defined explicitly in legislation and require specific domain knowledge. The
(legally) formalized nature of administrative decisions means that there is little
variation in terminology and syntactic structure for these ‘juridicized’ features.
In contrast, features such as the recipient which are not as ‘juridicized’ and do
not require specific domain knowledge (as any citizen can be the recipient of an
administrative decision), score relatively low. Since the latter features rely more
on common sense reasoning, LLMs struggle to identify these entities correctly,
as these features require understanding of everyday knowledge or contextual
inference beyond what is explicitly stated. However, when these entities are
written concisely or uniformly, their scores improve.

These results are in line with other studies, as, for instance, LLMs have demon-
strated limitations in abstract common-sense reasoning, often failing to grasp
relationships or contexts that humans intuitively understand [10]. Additionally,
the findings are also in line with other studies [5], where LLMs which are not
domain-specific show potential when applying few-shotting approaches, but face
challenges with boundary errors, false positives, and incomplete recall. The re-
sults show limitations of the LLM to handle contextual variations for certain
features, suggesting that tailoring models to the legal domain or specific (legal)
language may be necessary to achieve more reliable results. Furthermore, the
achieved scores are highly dependent on the prompt, thereby confirming previ-
ous work that has indicated that improving the prompt could significantly in-
crease performance [10]. All in all, LLMs can provide useful baseline annotations
that reduce manual work, but expert correction remains essential, especially for
ambiguous features.

5.2 Impact of pseudo-annotations on supervised NER

Table 5 presents the performance of both NER models across the three training
setups. The Gold models, trained solely on human annotations, achieve strong
results and form a reliable baseline, consistent with prior work showing the su-
periority of supervised methods over LLM-only approaches [20,23]. As expected,
the Silver models perform considerably worse due to noise in the LLM-generated
labels. However, when the Silver models are fine-tuned on human annotations
(Silver-to-Gold), their performance slightly exceeds that of the Gold models, in-
dicating that weakly supervised LLM-generated annotations can broaden train-
ing coverage and improve generalization in low-resource LER tasks, albeit with
modest gains.

Comparing the NER model with the more sophisticated joint NER-RE model,
we observe that every approach of the joint model outperforms the token-based
NER model on the same data. Although indicative, future research should in-
vestigate whether these gains stem specifically from the inclusion of relationship
extraction, by comparing a span-based NER task with a similar span-based
NER-RE task.

65

Compared to earlier studies, which found that weakly supervised models gen-
erally underperform fully supervised ones [15,17], our findings show that fine-
tuning a Silver model on Gold data can slightly surpass human-only baselines.
Unlike prior work that combined human and weak labels simultaneously during
training [17], our Silver-to-Gold approach separates the learning phases, first
leveraging the scale of pseudo-labels, then refining with human annotations.
The Silver-to-Gold model appears to generalize better, particularly by expand-
ing coverage and improving representation of ambiguous cases. Nevertheless,
inconsistencies in the pseudo-labels can still introduce noise, emphasizing the
need for careful integration of LLM-generated data.

Qualitative analysis shows that improvements in the Silver-to-Gold models
primarily stem from more accurate span boundaries and better coverage of al-
ternative expressions for entities (e.g., abbreviations or referential phrases).

Several limitations should be noted. Some sentences in the human-annotated
dataset were included despite lacking a legal effect, revealing shortcomings in
the sentence selection process. Certain legal action—object pairs were overrep-
resented, encouraging models to overfit to common patterns. Moreover, entities
expressed as pronouns in letter-style decisions create coreference issues. This
study also did not evaluate alternative NER or LLM architectures.

Finally, the findings offer insights into transferability: domains with highly for-
malized or pattern-consistent language (e.g., biomedical, financial, or regulatory
texts) may benefit similarly from pseudo-annotations, whereas domains with
greater linguistic variability may experience reduced gains. Transfer to other
languages likewise depends on the availability of strong monolingual pretrained
models; languages lacking such resources may not replicate the improvements
seen with BERTje. Nonetheless, the Silver-to-Gold strategy remains promising
for low-resource NER more broadly.

Future research could explore structure-aware or visually rich document NER
approaches [20,27] to assess generalizability.

6 Conclusion

This study examined the use of LLM-generated pseudo-annotations to augment
supervised NER models in a low-resource legal domain. GPT-5 can produce
large-scale annotations, but with uneven quality: entities that are explicitly de-
fined and consistently expressed (e.g., authority, legal object) are captured re-
liably, while longer or context-dependent entities (e.g., recipient, legal basis)
remain challenging.

LLM-generated annotations were used to expand the training data for two
NER models (a token-based model and a joint NER-RE model) and their im-
pact was evaluated across different training settings. Although models trained
solely on LLM-generated data perform worse, finetuning these models with a
smaller set of human annotations yields performance that slightly surpasses
models trained only on human-labeled data. This shows that weakly super-
vised LLM-generated annotations can broaden training coverage and improve
generalization in low-resource legal NER tasks.

Overall, the findings demonstrate the value of hybrid annotation strategies
that combine scalable LLM-generated labels with targeted human supervision,
offering a practical approach for developing more scalable and accurate legal IE
systems.

66

References

1.

10.

11.

12.

13.

14.

15.

Abdullah, M.H.A., Aziz, N., Abdulkadir, S.J., Alhussian, H.S.A., Talpur, N.: System-
atic literature review of information extraction from textual data: recent methods, appli-
cations, trends, and challenges. IEEE Access 11, 10535-10562 (2023), doi: 10.1109/AC-
CESS.2023.3240898

. Ashok, D., May, J.: A little human data goes a long way. In: Proceedings of the 63rd An-

nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
pp. 381-413. Association for Computational Linguistics (2025), doi: 10.18653/v1/2025.acl-
short.30

. Bogdanov, S., Constantin, A., Bernard, T., Crabbé, B., Bernard, E.P.: NuNER: Entity recog-

nition encoder pre-training via LLM-annotated data. In: Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing. pp. 11829-11841. Association for
Computational Linguistics (2024), doi: 10.18653/v1/2024.emnlp-main.660

. Braun, D.: I beg to differ: how disagreement is handled in the annotation of legal

machine learning data sets. Artificial intelligence and law 32(3), 839-862 (2024), doi:
10.1007/s10506-023-09369-4

. Breton, J., Billami, M.M., Chevalier, M., Nguyen, H.T., Satoh, K., Trojahn, C., Zin, M.M.:

Leveraging LLMs for legal terms extraction with limited annotated data. Artificial Intelli-
gence and Law pp. 1-27 (2025), doi: 10.1007/s10506-025-09448-8

. Chalkidis, 1., Fergadiotis, M., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: LEGAL-

BERT: The muppets straight out of law school. In: Findings of the Association for Computa-
tional Linguistics: EMNLP 2020. pp. 2898-2904. Association for Computational Linguistics
(2020), doi: 10.18653/v1/2020.findings-emnlp.261

. Darji, H., Mitrovié, J., Granitzer, M.: German BERT model for legal named entity recogni-

tion. In: Proceedings of the 15th International Conference on Agents and Artificial Intelli-
gence. vol. 3, p. 723-728. SciTePress (2023), doi: 10.5220/0011749400003393

. De Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T., van Noord, G., Nis-

sim, M.: BERTje: A dutch BERT model. arXiv preprint arXiv:1912.09582 (2019), doi:
10.48550/arXiv.1912.09582

. Eberts, M., Ulges, A.: Span-based joint entity and relation extraction with transformer pre-

training. arXiv preprint arXiv:1909.07755 (2019), doi: 10.3233/FAIA200321

Gawin, C., Sun, Y., Kejriwal, M.: Navigating semantic relations: Challenges for language
models in abstract common-sense reasoning. In: Companion Proceedings of the ACM on
Web Conference 2025. pp. 971-975 (2025), doi: 10.1145/3701716.3715472

Gray, M., Savelka, J., Oliver, W., Ashley, K.: Can GPT alleviate the burden of annota-
tion? In: Legal Knowledge and Information Systems, pp. 157-166. I0S Press (2023), doi:
10.3233/FATA230961

Guo, X., Chen, Y.: Generative ai for synthetic data generation: Methods, challenges and the
future. arXiv preprint arXiv:2403.04190 (2024), doi: 10.48550/arXiv.2403.04190

Hage, J.: Basic concepts of law. In: Introduction to law, pp. 33-52. Springer (2017), doi:
10.1007/978-3-319-57252-9_3

Keraghel, 1., Morbieu, S., Nadif, M.: Recent advances in named entity recognition: A com-
prehensive survey and comparative study. arXiv preprint arXiv:2401.10825 (2024), doi:
10.48550/arXiv.2401.10825

Mgller, A.G., Pera, A., Dalsgaard, J., Aiello, L.: The parrot dilemma: Human-labeled
vs. LLM-augmented data in classification tasks. In: Proceedings of the 18th Confer-
ence of the European Chapter of the Association for Computational Linguistics (Volume
2: Short Papers). pp. 179-192. Association for Computational Linguistics (2024), doi:
10.18653/v1/2024.eacl-short.17

67

http://doi.org/10.1109/ACCESS.2023.3240898
http://doi.org/10.1109/ACCESS.2023.3240898
https://doi.org/10.18653/v1/2025.acl-short.30
https://doi.org/10.18653/v1/2025.acl-short.30
https://doi.org/10.18653/v1/2024.emnlp-main.660
https://doi.org/10.1007/s10506-023-09369-4
https://doi.org/10.1007/s10506-025-09448-8
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.5220/0011749400003393
https://doi.org/10.48550/arXiv.1912.09582
https://doi.org/10.3233/FAIA200321
https://doi.org/10.1145/3701716.3715472
https://doi.org/10.3233/FAIA230961
https://doi.org/10.48550/arXiv.2403.04190
https://doi.org/10.1007/978-3-319-57252-9_3
https://doi.org/10.48550/arXiv.2401.10825
https://doi.org/10.18653/v1/2024.eacl-short.17

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Nan, H., Marx, M., Wolswinkel, J.: Combining rule-based and machine learning methods
for efficient information extraction from enforcement decisions. In: Legal Knowledge and
Information Systems, pp. 321-326. 10S Press (2024), doi: 10.3233/FAIA241262

Oliveira, V., Nogueira, G., Faleiros, T., Marcacini, R.: Combining prompt-based language
models and weak supervision for labeling named entity recognition on legal documents.
Artificial Intelligence and Law 33(2), 361-381 (2025), doi: 10.1007/s10506-023-09388-1
Premasiri, D., Ranasinghe, T., Mitkov, R., El-Haj, M., Frommbholz, I.: Survey on legal in-
formation extraction: current status and open challenges: D. premasiri et al. Knowledge and
Information Systems pp. 1-72 (2025), doi: 10.1007/s10115-025-02600-5

Research Network on European Administrative Law: ReNEUAL model rules on EU admin-
istrative procedure (2014), https://www.reneual.eu/images/Home/ReNEUAL-Model_
Rules-Compilation_BooksI_VI_2014-09-03.pdf

Seow, W.L., Chaturvedi, 1., Hogarth, A., Mao, R., Cambria, E.: A review of named entity
recognition: from learning methods to modelling paradigms and tasks. Artificial Intelligence
Review 58(10), 1-87 (2025), doi: 10.1007/s10462-025-11321-8

Sui, D., Zeng, X., Chen, Y., Liu, K., Zhao, J.: Joint entity and relation extraction with set pre-
diction networks. IEEE transactions on neural networks and learning systems 35(9), 12784—
12795 (2023), doi: 10.1109/TNNLS.2023.3264735

Wadden, D., Wennberg, U., Luan, Y., Hajishirzi, H.: Entity, relation, and event extrac-
tion with contextualized span representations. arXiv preprint arXiv:1909.03546 (2019), doi:
10.48550/arXiv.1909.03546

Wang, S., Sun, X., Li, X., Ouyang, R., Wu, F, Zhang, T., Li, J., Wang, G., Guo, C.: GPT-
NER: Named entity recognition via large language models. In: Findings of the Association
for Computational Linguistics: NAACL 2025. pp. 4257-4275. Association for Computa-
tional Linguistics (2025), doi: 10.18653/v1/2025 .findings-naacl.239

Xiao, L., Xu, Y., Zhao, J.: LLM-DER: A named entity recognition method based on large
language models for chinese coal chemical domain. arXiv preprint arXiv:2409.10077 (2024),
doi: 10.48550/arXiv.2409.10077

Xie, T., Li, Q., Zhang, J., Zhang, Y., Liu, Z., Wang, H.: Empirical study of zero-shot ner with
chatgpt. arXiv preprint arXiv:2310.10035 (2023), doi: 10.48550/arXiv.2310.10035

Xie, T., Li, Q., Zhang, Y., Liu, Z., Wang, H.: Self-improving for zero-shot named en-
tity recognition with large language models. arXiv preprint arXiv:2311.08921 (2023), doi:
10.48550/arXiv.2311.08921

Yang, H.W., Agrawal, A.: Extracting complex named entities in legal documents via weakly
supervised object detection. In: Proceedings of the 46th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. pp. 3349-3353 (2023), doi:
10.1145/3539618.3591852

Ye, J., Xu, N., Wang, Y., Zhou, J., Zhang, Q., Gui, T., Huang, X.: LLM-DA: Data aug-
mentation via large language models for few-shot named entity recognition. arXiv preprint
arXiv:2402.14568 (2024), doi: 10.48550/arXiv.2402.14568

Zadgaonkar, A.V., Agrawal, A.J.: An overview of information extraction techniques for legal
document analysis and processing. International Journal of Electrical & Computer Engineer-
ing (2088-8708) 11(6) (2021), doi: 10.11591/ijece.v11i6.pp5450-5457

Zhuang, B., Liu, J., Pan, Z., He, H., Weng, Y., Shen, C.: A survey on efficient training of
transformers. arXiv preprint arXiv:2302.01107 (2023), doi: 10.48550/arXiv.2302.01107
Zorzanelli Costa, M., Faria Robson, D., Vieira, T.B.P., Bourguet, J.R., Guizzardi, G.,
Almeida, J.P.A.: Automated semantic annotation pipeline for brazilian judicial decisions.
In: Legal Knowledge and Information Systems. vol. 395, pp. 226-238. I0S (2024), doi:
10.3233/FAIA241248

Cetindag, C., Yazicio8lu, B., Kog, A.: Named-entity recognition in turkish legal texts. Natu-
ral Language Engineering 29(3), 615-642 (2023), doi: 10.1017/S1351324922000304

68

https://doi.org/10.3233/FAIA241262
https://doi.org/10.1007/s10506-023-09388-1
https://doi.org/10.1007/s10115-025-02600-5
https://www.reneual.eu/images/Home/ReNEUAL-Model_Rules-Compilation_BooksI_VI_2014-09-03.pdf
https://www.reneual.eu/images/Home/ReNEUAL-Model_Rules-Compilation_BooksI_VI_2014-09-03.pdf
http://doi.org/10.1007/s10462-025-11321-8
https://doi.org/10.1109/TNNLS.2023.3264735
https://doi.org/10.48550/arXiv.1909.03546
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://doi.org/10.48550/arXiv.2409.10077
http://doi.org/10.48550/arXiv.2310.10035
http://doi.org/10.48550/arXiv.2311.08921
https://doi.org/10.1145/3539618.3591852
https://doi.org/10.48550/arXiv.2402.14568
http://doi.org/10.11591/ijece.v11i6.pp5450-5457
https://doi.org/10.48550/arXiv.2302.01107
http://doi.org/10.3233/FAIA241248
https://doi.org/10.1017/S1351324922000304

Structured Four-Stage Legal Translation:
From Natural-Language Traffic Rules to PROLOG

May Myo Zin![0000-0003—1315-7704] \Wachara
1[0000—-0001—9294—3118 1[0000—0002—9309—4602
Fungwacharakorn'! I, Ken Satoh!!]
Katsumi Nittal[0000—0002—9018—8603]

, and

Center for Juris-Informatics, ROIS-DS, Tokyo, Japan
{maymyozin,wacharaf,ksatoh}@nii.ac.jp, knitta0OQgmail.com

Abstract. Traffic regulations are written for human interpretation and
therefore rely on shared background knowledge and flexible phrasing,
which inherently introduce ambiguity, context dependence, and seman-
tic underspecification. These linguistic characteristics conflict with the
precision required by computational reasoning engines such as Prolog,
which demand explicit logical structure. This study evaluates two base-
line translation approaches, Natural Language to Prolog (NL — Prolog)
and Logical English to Prolog (LE — Prolog), and introduces a new
reasoning-guided translation framework called Structured Four-Stage Le-
gal Translation (S4L — Prolog). The proposed S4L framework performs
semantic role extraction, scene completion, logical mapping, and Prolog
rule generation within a single guided prompt, enabling direct translation
of raw traffic rules into executable logic without human intervention. A
benchmark consisting of twenty real-world traffic rules was used to eval-
uate each approach in terms of syntactic validity, semantic correctness,
and logical completeness. S4L — Prolog achieves the highest accuracy,
correctly formalizing 75 percent of the rules, while NL — Prolog reaches
60 percent and LE — Prolog reaches 55 percent. Qualitative analysis
further shows that S4L captures implicit causal relations, deontic modal-
ity, and exception structure more reliably than the baselines. These re-
sults demonstrate that structured reasoning prompts can substantially
improve the reliability of natural-language-to-logic translation for legal
and safety-critical applications.

Keywords: Machine-executable logic - Traffic rules - Autonomous driv-
ing - Large language model - Structured prompting - PROLOG.

1 Introduction

Autonomous vehicles and intelligent transport systems must obey complex traf-
fic regulations originally drafted for human understanding. These rules describe
obligations, prohibitions, and permissions that govern safe and lawful conduct
on public roads. However, the semantic clarity required by machines differs fun-
damentally from that intended for humans. Natural-language rules are ambigu-
ous, context-dependent, and often underspecified, relying on shared background

69

knowledge about road configurations, visibility, or intent. Translating these rules
into formal logic suitable for computational reasoning therefore remains a major
challenge in legal informatics and autonomous systems research.

Existing efforts to mechanize the translation of natural-language norms into
formal logic remain limited in their ability to achieve full automation. Con-
trolled Natural Languages (CNLs), such as Attempto Controlled English (ACE)
[5] and Logical English (LE) [7], reinterpret rules in a human-readable yet log-
ically precise form, enabling their subsequent mapping to formal logic. While
these methods enhance clarity and reduce ambiguity, they still rely heavily on
manual paraphrasing and the explicit inclusion of implicit contextual informa-
tion by domain experts. Automating the transformation of natural language into
CNLs is also a challenging task. Formal logic systems for traffic and safety com-
pliance, including those based on deontic, temporal, and defeasible logic, provide
rigorous reasoning once the formal rules are established. However, they assume
the existence of a formalized rule base, which is both costly and reliant on hu-
man effort. While deep learning and large language model (LLM) approaches
exhibit fluent linguistic interpretation, they often generate syntactically incor-
rect or semantically incomplete logic in formal translation tasks, unless the input
is first simplified or restructured through human intervention. Despite advances
across these paradigms, there remains no fully automated workflow that starts
from raw natural-language traffic rules, performs semantic interpretation, world-
knowledge inference, and normative reasoning, and produces executable logic
ready for deployment.

This paper presents a structured four-stage prompt that guides an LLM
through a complete interpretive cycle, enabling the translation of natural lan-
guage traffic norms into executable Prolog logic. The goal is to achieve logical
completeness and semantic fidelity without requiring human intervention for
contextual supplementation. Rather than relying on manual preprocessing, as in
CNL pipelines or hybrid approaches combining pseudo-CNL with LLMs, or on
shallow rule extraction typical of deep learning and NLP techniques, our system
operates directly on raw natural-language traffic rules.

2 Related Work

Efforts to translate natural-language regulations into machine-interpretable form
span two converging threads: (i) domain-specific formalization of traffic rules and
(ii) NLP-to-logic pipelines for extracting and encoding normative content.

In the context of traffic regulation, early work manually-formalized subsets of
national and international traffic laws into temporal logics to enable automated
compliance checking, thereby demonstrating the value of temporal operators for
rules that unfold over time. A representative example is Maierhofer et al.’s for-
malization of German interstate rules into metric temporal logic (MTL) with a
four-stage process (extract, concretize, define predicates, and synthesize formu-
las), which remains a touchstone for structuring end-to-end pipelines even when
NLP is introduced later [9]. Rizaldi et al. [13,14], followed by Linker et al. [§],

70

encoded subsets of the Vienna Convention on Road Traffic in Isabelle/HOL, fo-
cusing on rule compliance and collision avoidance. These works demonstrated the
feasibility of mechanically proving safety properties but relied heavily on man-
ual formalization by domain experts. Complementary efforts employed spatio-
temporal logics such as Multi-Lane Spatial Logic (MLSL) and Signal Temporal
Logic (STL) to capture notions like safe distance and right-of-way [6,3]. In par-
allel, frameworks such as Responsibility-Sensitive Safety (RSS) [15] and Rule-
books [1] provided prioritized sets of constraints guiding safe and interpretable
motion planning. While these approaches improved automation in checking rule
compliance, they still required manual translation of textual norms into logical
formulas.

A parallel line of work targets NLP-assisted translation to temporal and
deontic logics. Manas and Paschke [10] propose an SRL-assisted pipeline that
identifies predicate—argument structures and temporal aspects from rule text,
then maps them to temporal logic. Building on this, TR2MTL [11] uses LLMs
with chain-of-thought prompting to translate traffic rules into MTL in a human-
in-the-loop setting, reporting strong accuracy on a curated traffic-rule dataset.
Recent engineering surveys echo this need to (a) translate free-text traffic rules,
(b) check semantic correctness, and (c) include expert review due to linguistic
ambiguity [16].

Beyond temporal logics, legal-tech standards aim to capture normative struc-
ture explicitly. LegalRuleML [12] provides an XML-based representation tailored
to legal norms and has accompanying transformations to (defeasible) deontic
logic for automated reasoning; these works emphasize traceability of deontic ef-
fects (obligation, permission, prohibition) and interoperability with rule engines.

Complementary studies examine automatic extraction of legal norms and
evaluate NLP tools for identifying obligations, prohibitions, conditions, and ex-
ceptions in statutory text—capabilities that underpin upstream information ex-
traction in NLP-to-logic pipelines [4]. Most existing frameworks adopt a hybrid,
human-in-the-loop paradigm [17]. Natural language processing components such
as semantic role labeling, dependency parsing, and large language model prompt-
ing generate structured candidate representations. These candidates are then
encoded by formal reasoning back-ends, after which domain experts validate se-
mantics and resolve ambiguities before deployment. Recent research has refined
this interaction loop through techniques such as grammar-constrained decod-
ing and verification-guided prompting, aiming to improve the faithfulness and
reliability of the generated formal expressions [2].

3 Research Gap and Motivation

Despite the substantial body of work reviewed above, a key gap persists at the
intersection of linguistic interpretation and logical execution. Existing pipelines
rely on human pre-processing to resolve ambiguity and add contextual detail
before formalization [17]. LLMs, on the other hand, show emerging capacity for

71

contextual understanding but often conflate meaning with syntax when asked to
generate logic directly.

The motivation for the present study stems from the need to integrate inter-
pretive reasoning and logical formalization within a single automated process.
Traffic regulation offers an ideal testbed because its rules combine concrete spa-
tial conditions with abstract normative modalities. Successful automation in this
domain would demonstrate how LLMs can bridge the gap between natural se-
mantics and machine-readable logic.

Accordingly, this research pursues three objectives:

— To design a structured prompt that compels the LLM to perform stepwise
semantic, contextual, and logical reasoning.

— To evaluate whether such scaffolding yields syntactically valid and semanti-
cally faithful Prolog representations without human intervention.

— To empirically measure the framework’s effectiveness through a benchmark
of 20 authentic traffic rules, assessing logical validity, contextual complete-
ness, and semantic fidelity.

By addressing these goals, the study aims to advance automated normative
translation from descriptive linguistic statements to executable reasoning ar-
tifacts, which is a foundational step toward explainable and legally compliant
autonomous systems.

4 Methodology

This study investigates three distinct strategies for translating natural-language
traffic regulations into executable Prolog rules. Two approaches, Logical English
to Prolog (LE — Prolog) and Natural Language to Prolog (NL — Prolog),
serve as baseline models. The third approach, Structured Four-Stage Legal Trans-
lation (S4L — Prolog), represents the proposed framework.

4.1 Baseline Methods

Logical English to Prolog (LE — Prolog): The first baseline employs
Logical English (LE)!, a controlled natural language designed to reduce ambi-
guity while maintaining human readability. The model receives a 19-shot prompt,
containing nineteen examples of LE rules paired with their Prolog translations.
This method evaluates the LLM’s capacity for syntactic transformation under
structured, low-ambiguity input conditions, where most semantic interpretation
is already encoded in the LE syntax.

! The Logical English (LE) inputs used in this study follow a pseudo-Logical English
format: a semi-controlled variant of English that mirrors the syntactic and modal
structure of formal Logical English but does not strictly conform to its grammar
specification. This pseudo-LE representation facilitates interpretability by large lan-
guage models while maintaining semantic alignment with deontic expressions such
as permitted, prohibited, and obligatory.

72

Natural Language to Prolog (NL — Prolog): The second baseline uses
the unaltered natural-language form of each rule as input. The same 19-shot
prompt structure is used, but examples consist of ordinary traffic rules written
in natural language and their corresponding Prolog forms. This baseline mea-
sures the LLM’s ability to perform direct language-to-logic mapping, handling
implicit meanings, contextual dependencies, and deontic expressions without
prior formalization.

4.2 Proposed Method: Structured Four-Stage Legal Translation

The proposed Structured Four-Stage Legal Translation (S4L) framework is
founded on the observation that linguistic comprehension and logical represen-
tation are not separate stages of cognition but complementary layers of under-
standing. A human expert, when reading a traffic rule such as “Do not cross a
solid white line”, implicitly reconstructs a scene containing two or more lanes,
recognizes that the solid line demarcates a boundary that should not be crossed,
and classifies the rule as a prohibition applying to a driver or vehicle. The LLM
is guided to emulate precisely this interpretive sequence, moving systematically
from semantic understanding to formal codification. This is achieved by break-
ing down the translation task into four consecutive reasoning phases: semantic
role extraction, scene completion, logical mapping, and formal output genera-
tion. Each phase is explicitly represented in the prompt. Unlike the baselines,
S4L — Prolog is a zero-shot prompt, relying solely on a single detailed in-
struction template rather than in-context examples. The complete process is
composed of four reasoning stages that together operationalize linguistic inter-
pretation into executable PROLOG logic.

Stage 1 - Semantic Role Extraction: In the first stage of processing, the
model analyzes the surface structure of a traffic rule to extract its underly-
ing semantic components. This involves breaking down the rule into parts that
describe who is doing what, under what conditions, and whether the action is
allowed or not. These components include:

Agent — the entity responsible for the action

Primary Action — the main behavior being regulated

Method Action — the manner or means by which the primary action is
performed

Condition — the explicit or implicit circumstances under which the rule
applies

Modality — the type of normative force involved: obligation, prohibition, or
permission

Exception — any explicitly stated exceptions to the rule (if present)
Implicit Facts — background knowledge or assumptions necessary for un-
derstanding the rule, even though they are not explicitly stated

73

This process extends conventional semantic role labeling and frame semantics
by incorporating deontic modalities, which express duties, permissions, or pro-
hibitions. To clarify, we present the following example:

Ezxample 1. “If a driver is driving on a road with a solid white line, he must not
use the oncoming lane when overtaking.”

From this traffic rule, the model automatically extracts the following semantic
roles:

— Agent: driver

— Primary Action: overtake

— Method Action: use the oncoming lane

— Condition: driving on a road with a solid white line
— Modality: prohibition

— FException: none

In addition, it automatically infers several implicit facts essential for a com-
plete understanding of the rule:

— Roads with a solid white line have at least two lanes, one for each direction
of traffic.

— A solid white line separates opposing flows of traffic.

— “Using the oncoming lane” means entering the lane intended for traffic in
the opposite direction.

— Qwertaking is normally done by changing lanes.

— The solid white line prohibits crossing.

By explicitly identifying both semantic roles and implicit facts, the framework
transforms complex natural language into structured, machine-interpretable data.

Stage 2 - Scene Completion: The second stage addresses a crucial short-
coming of previous translation methods: the absence of world knowledge. Most
traffic laws presuppose an elaborate context, such as the presence of lanes, sig-
nage, opposing directions of traffic, and physical boundaries. However, these
contextual elements are rarely stated explicitly. The scene completion step in-
structs the model to reconstruct this context in concise natural language before
formalization.

For example, the overtaking rule (as introduced in Example 1) leads to the
following scene description: “A driver is traveling on a road divided by a solid
white line, which separates two lanes of opposing traffic. The driver considers
overtaking a slower vehicle ahead. To overtake, the driver would need to cross
the solid white line and enter the oncoming lane. However, because of the line
marking, crossing into the oncoming lane for overtaking is prohibited in this
situation.”.

This contextual reconstruction serves a dual function. First, it validates the
model’s understanding of the rule. Second, it connects linguistic meaning to
the physical situation the rule refers to. By requiring the model to explicitly
describe the scene, the framework ensures that each logical rule is grounded in
a consistent and accurate understanding of the physical environment.

74

Stage 3 - Logical Mapping and Short Explanation: The third stage trans-
forms the enriched natural-language understanding into formal logic. Here, the
model converts the semantic and contextual information into PROLOG pred-
icates consistent with a traffic reasoning ontology. Each predicate corresponds
to an entity or relation inferred in the earlier stages, while deontic modality is
encoded through meta-predicates such as obligation/1, prohibition/1, or permis-
sion/1.

For instance, the earlier overtaking rule (as introduced in Example 1) yields
the following logical clause:

prohibited (overtake(Driver, Vehicle)) :—
driving_on(Driver, Lanel),
driving _on(Vehicle, Lanel),
adjacent(Lanel, Lane2),
oncoming_lane(Lane2, Lanel),
separated by line(Lanel, Line, Lane2),
solid _white(Line),
do_ by(overtake(Driver, Vehicle), use lane(Driver, Lane2)).

As part of this stage, the model is instructed to generate a short explanatory
paragraph that links the natural language rule to its formal representation, as
follows:

Short Explanation:

This rule prohibits overtaking by using the oncoming lane when the two lanes are
separated by a solid white line. The do_by/2 predicate captures the fact that the
prohibition applies to overtaking by using the oncoming lane — not overtaking in
general. Implicit facts about lane adjacency, directional flow, and road markings
are used to complete the logic. This ensures the rule is only enforced in contexts
where crossing the line would be illegal.

An additional instruction is given to the model to maintain predicate con-
sistency by reusing predicates from a predefined list when appropriate. This
mechanism helps preserve alignment with existing ontology terms and ensures
semantic consistency across generated representations. However, the handling
of newly introduced predicates is not addressed in the current implementation.
In future work, this aspect will be explored through a semi-automated review
process that combines LLM-based predicate similarity checking with human val-
idation. The design and evaluation of this process are beyond the scope of the
present paper.

Stage 4 - Formal Output Generation: In the final stage, the model outputs
the results in a standardized structure containing the original rule, the extracted
semantic roles, the scene description, the executable Prolog code, and a short
explanatory paragraph linking the natural language and formal representation.
This consistency supports both human review and downstream automation.

This format also serves a pedagogical function: it provides an interpretable
audit trail showing how the LLM derived each logical component from the orig-
inal rule. In legal and safety-critical contexts, such traceability is vital for ac-
countability and verification.

75

5 Experimental Setup

To support reproducibility, we consolidate here all experimental conditions used
across the three translation methods. The two baselines (LE — Prolog and
NL — Prolog) used a 19-shot prompt containing paired examples of rules and
translations, whereas S4L — Prolog used a single zero-shot prompt specifying
the four-stage translation structure. All experiments were run using the GPT-4.1
model with deterministic decoding (temperature = 0) to eliminate randomness.
A reference inventory of 60 predefined predicates (derived from existing manual
Prolog representations of traffic rules) is provided to all translation methods. The
inventory contains Prolog predicates that capture common relational and unary
concepts used in reasoning about traffic rules (e.g., driving_on/2, overtake/2,
separated_by_line/3, prohibited/1), and it serves as a semantic reference to
encourage consistency across translations. However, the models are not strictly
constrained to this set: when a suitable predicate is unavailable or semantically
inadequate, the model is allowed to introduce new predicate names following
Prolog syntax and relational logic conventions.

5.1 Prompt Templates

As illustrated in Listings 1.1 and 1.2, the prompt templates define the structural
and procedural foundations for the translation process. Listing 1.1 specifies the
format for NL/LE — Prolog conversion, while Listing 1.2 outlines the four-
stage reasoning structure adopted in S4L — Prolog.

You are an assistant tasked with translating traffic rules into PROLOG code.

Using the provided pre—defined predicates and examples as a guide, write the PROLOG code for
the given traffic rule. Do not provide explanations.

If there are predicates with similar meanings
(e.g., driving_on/2 is the same as travelling on/2, use_lane/2, use_road/2, etc.),
do not create new predicates unless necessary.

Existing predicates: [pre—defined predicate list omitted for brevity]

Example 1:
Original Traffic Rule (NL/LE version):

< <originalTrafficRule NL[1]>> or <<originalTrafficRule LE[1]>>
Prolog Code: <<prolog[1]>>

Example 19:
Original Traffic Rule (NL/LE version):

< <originalTrafficRule NL[19]>> or <<originalTrafficRule LE[19]>>
Prolog Code: <<prolog[19]>>

Given Original Traffic Rule (NL/LE version):
< <originalTrafficRule_ NL>> or <<originalTrafficRule LE>>
Prolog Code:

Listing 1.1: Prompt template for NL/LE — Prolog translation.

76

System role: Expert in computational linguistics, deontic logic, and autonomous driving reasoning.

Task: Translate natural—language traffic rules into executable Prolog logic for an autonomous
reasoning engine.

Four—stage reasoning structure:
STEP 1 Semantic Role Extraction
STEP 2 Scene Completion
STEP 3 Logical Mapping
STEP 4 Output Formatting

Output includes:
— Semantic roles, modality, exception, and implicit facts
— Completed driving scene description
— Executable Prolog representation
— Short explanation of how the explicit and implicit meanings were combined

Listing 1.2: Brief structure of the S4L — Prolog prompt. The complete prompt
is available at the GitHub link.

5.2 Traffic Rules Dataset

The dataset consists of twenty implicit traffic rules derived from German court
decisions interpreting the Road Traffic Act (Straflenverkehrsordnung, StVO) with
specific reference to Sign 295, the solid white line road marking. Each rule rep-
resents a judicially inferred interpretation that clarifies the legal meaning and
permissible behavior associated with this traffic sign. The original rules were
written in German and later translated into English for the purpose of this re-
search. The translated rules were kept in their original legal phrasing to preserve
authentic ambiguity and open-texture expressions typical of legislative drafting.
This choice intentionally reflects real-world interpretive difficulty, rather than
sanitized examples. The diversity of rule types allowed for systematic testing
of the model’s ability to infer missing context, detect modality, and generate
logically coherent formal representations.

Table 1 presents the complete list of traffic rules used for evaluation. The
dataset covers a range of logical constructs including prohibitions, permissions,
obligations, and conditional clauses. This diversity enables evaluation of how
well each method captures deontic modality, causal reasoning, and spatial rela-
tionships within the formal Prolog translation task.

6 Results and Discussion

Each of the twenty benchmark traffic rules was independently translated using
three methods: LE — Prolog, NL — Prolog, and the proposed S4L — Prolog.
All generated Prolog programs were manually assessed for three criteria: syn-
tactic validity, semantic correctness, and logical completeness. A translation was
marked as Correct if the resulting Prolog clauses were executable and semanti-
cally faithful to the original traffic rule. Outputs that were only partially correct
or omitted causal relationships were marked as Incorrect, while translations that
demonstrated superior contextual or logical completeness were labeled as Best.

77

https://github.com/mtproleg/NLL2FR2025/blob/main/S4L-Prolog-Prompt.pdf

Table 1: Traffic Rules Dataset (Rules 1-20)

Rule

Description

1

2

10

11

12

13

14

15

16

17

18

19

20

If a driver is driving on a road with a solid white line, he must not use the oncoming lane
when overtaking.

At an intersection, if a driver is travelling in a lane designated for traffic travelling straight
ahead or turning left and there is a lane to the driver’s right designated for traffic travelling
straight ahead or turning left and if the two lanes are separated by a solid white line, the
driver must not move into the right lane by crossing the solid white line.

If a driver is travelling on a carriageway with a solid white line, the driver must not cross the
line to overtake a vehicle in front of him wishing to turn left and stopping in the carriageway
because of oncoming traffic.

If a driver is driving on a carriageway with a solid white line, he must not cross or drive on
this line, neither for the purpose of turning left.

If a driver is driving on a lane with a solid white line and the lane is so narrow that
overtaking is not possible without crossing the solid white line, then he must not initiate
an overtaking manoeuvre in the first place.

If a driver is driving on a road with a solid white line, he may overtake if he does not touch
the solid white line and, in accordance with §5 para. 4 sentence 2 StVO, keeps a sufficient
distance to third party road users.

If a driver is driving in a lane separated from other lanes by solid white lines, then the
driver must not change lanes.

If a driver is driving on a carriageway with a solid white centre line, then neither the body
nor the cargo of the vehicle may protrude above the centre line.

If a driver is driving on a carriageway with a solid white line, then a properly stored cargo
may protrude above the solid white line if otherwise traffic to the right of the vehicle would
be endangered, but oncoming traffic would not.

If the driver of a vehicle is driving on a carriageway with a solid white line, then, under
section 127 of the Criminal Procedure Code, he must not cross it in order to identify an
offender having committed an offence without any harmful consequences.

If a driver is driving on a carriageway with a solid white line, then he must not stop on the
carriageway if he thereby obstructs other traffic or if the distance from the solid white line
is smaller than 3 m.

If a driver is travelling on a carriageway with a solid white line demarcating the carriageway
to the right of a special path, then the driver may stop to the left of the solid white line.
If a driver is driving on a carriageway with a solid white line demarcating the edge of the
carriageway and if there is sufficient empty space to the right of the carriageway, parking
or stopping to the left of the carriageway demarcation is not permitted.

If a driver is driving on a carriageway with a solid white line demarcating the edge of the
carriageway (edge line), he or she is allowed to drive across it.

When driving on a road with a solid white line, the driver may cross it only in exceptional
cases.

If, at the beginning of a solid white lane, an overtaking manoeuvre has not yet been com-
pleted, the driver shall discontinue the overtaking manoeuvre if it can only be continued
by using the other lane.

If a driver drives on a carriageway with a solid white line and crosses this line, this does not
constitute a violation of the prohibition to overtake in §5 of the Road Traffic Act (StVO).
If a driver is driving on a carriageway with a solid white line, then he must not turn left
into a property driveway if this is only possible by crossing the solid white line.

If a driver is driving on a carriageway with a solid white edge line at the left-hand edge, he
must not cross it to park on the verge behind.

If a pedestrian crosses a carriageway the lanes of which are separated by a solid white line,
then he may trust that no vehicle is coming from the left on the oncoming lane.

The complete outputs from all approaches, along with the corresponding
human expert evaluations, are available in the online supplementary materials?.
Table 2 summarizes the comparative results across all twenty rules. The overall
counts are as follows:

2 https://github.com/mtproleg/NLL2FR2025

78

https://github.com/mtproleg/NLL2FR2025

Correct count: LE — Prolog = 11, NL — Prolog = 12, S4L — Prolog = 15
Incorrect count: LE — Prolog =9, NL — Prolog = 8, SAL — Prolog =5
Best outcomes: S4L — Prolog = 3 (Rules 1, 4, 16).

Table 2: Comparative Evaluation of Translation Accuracy (Rules 1-20)

Rule LE — Prolog NL — Prolog S4L — Prolog

1 Correct Correct Best

2 Correct Incorrect Correct
3 Incorrect Correct Correct
4 Correct Correct Best

5 Incorrect Incorrect Incorrect
6 Incorrect Correct Correct
7 Correct Correct Correct
8 Correct Correct Correct
9 Correct Incorrect Correct
10 Correct Correct Correct
11 Correct Incorrect Incorrect
12 Correct Correct Correct
13 Incorrect Incorrect Correct
14 Correct Correct Correct
15 Incorrect Correct Correct
16 Incorrect Correct Best

17 Incorrect Incorrect Incorrect
18 Incorrect Incorrect Correct
19 Correct Correct Incorrect
20 Incorrect Incorrect Incorrect

6.1 Quantitative Summary

Across all twenty rules, S4L — Prolog achieved the highest correct rate at ap-
proximately 75%, followed by NL — Prolog at 60% and LE — Prolog at
55%. Although the LE — Prolog method benefited from its syntactic struc-
ture, it often lacked contextual inference. The NL — Prolog baseline captured
natural semantics more effectively but misinterpreted logical operators in com-
plex sentences. In contrast, S4L — Prolog consistently produced logically valid
and semantically complete outputs, even under a zero-shot setting.

6.2 Qualitative Analysis

Several representative rules illustrate the comparative strengths and weaknesses
of each approach:

Rule 2 (Conjunction vs. Disjunction): NL — Prolog incorrectly used
and([straight _ahead, turn_left]) instead of or([straight_ahead, turn_left]),
while S4L — Prolog correctly inferred the disjunctive structure from con-
text.

Rule 5 (Causal Relationship): All methods failed to represent the causal
dependency between the narrow road condition and the prohibition of over-
taking, indicating the need for enhanced world knowledge integration.

79

Rule 10 (Exception Priority): S4L — Prolog accurately modeled the
interaction between the main rule and the exception clause, preserving the
correct rule priority in its logical form.

Rule 16 (Ongoing Action): Only S4L — Prolog explicitly represented
that overtaking was already in progress, demonstrating its superior ability
to capture temporal context.

These examples highlight S4L’s capacity to manage deontic reasoning, rela-
tional predicates, and conditionally dependent clauses more effectively than the
baselines.

6.3 Discussion

The comparison shows that structured reasoning guidance improves the reliabil-
ity of LLM-generated logic translations. While the few-shot baselines performed
adequately on syntactically simple rules, they often struggled with implicit con-
ditions or exception handling. In contrast, S4L’s zero-shot framework effectively
decomposed interpretation into interpretable cognitive stages, achieving supe-
rior logical integrity without relying on example-based prompting. S4L’s four-
stage process (semantic role extraction, scene completion, logical mapping, and
output formatting) consistently promoted internal consistency across predicates
and modalities. The findings suggest that structured prompting can outperform
example-based learning in legal text formalization tasks, particularly where im-
plicit facts and deontic structure are essential. S4L — Prolog therefore pro-
vides a promising framework for transforming natural-language regulations into
machine-actionable logic suitable for use in autonomous vehicle reasoning and
other computational law applications.

7 Challenges and Insights

The translation of natural-language legal text into executable logic exposes the
fundamental tension between human interpretive flexibility and machine formal
rigidity. During experimentation, several challenges emerged that highlight both
the promise and the boundaries of LLM-based legal formalization.

The first major challenge concerns linguistic ambiguity and vagueness. Legal
drafters intentionally employ open-textured terms, such as reasonable distance,
safe manner, or due care, to preserve interpretive flexibility across contexts.
While LLMs can paraphrase or substitute synonyms, they cannot by themselves
assign concrete thresholds or numerical parameters to these concepts without
external knowledge bases or policy directives. In our study, the model often han-
dled such phrases descriptively, generating predicates like safe distance(Vehicle,
FrontVehicle) without quantifying what constitutes “safe”. Although this main-
tains semantic fidelity, it limits the code’s executability in operational systems.
The finding underscores that full automation of legal formalization ultimately
requires integration with domain ontologies and empirical parameters. A sec-
ond challenge concerns temporal reasoning. Many traffic norms are inherently

80

temporal: they involve states that change over time, such as traffic lights, ve-
hicle motion, or right-of-way at dynamic intersections. The underlying Prolog
framework, while suitable for static deontic relations, lacks native temporal op-
erators. Consequently, when the model translated rules like “Stop until the light
turns green”, it tended to produce static prohibitions rather than temporal con-
ditions. Addressing this requires extending the logical target language to include
temporal-deontic operators or coupling it with event calculus frameworks. A
third insight involves exception hierarchy and conflict resolution. Legal norms
rarely exist in isolation; they interact through priority structures such as emer-
gency rules overriding ordinary ones. Although the LLM-generated rules cor-
rectly captured many “unless” exceptions, they did not consistently establish ex-
plicit precedence among conflicting norms. For autonomous reasoning engines,
resolving such conflicts is critical. Incorporating non-monotonic logic or defeasi-
ble reasoning layers atop the generated Prolog code could provide a structured
method for such resolution.

Finally, there is a conceptual insight concerning human—machine interpre-
tive complementarity. Rather than replacing human legal reasoning, automation
supports a synergistic division of labor: the LLM excels at enumerating plau-
sible interpretations and reconstructing context rapidly, while human experts
remain essential for validating normative soundness. The structured prompting
approach thus acts as a bridge, capturing the interpretive richness of human
reasoning and the formal rigor of computational logic.

8 Conclusion and Future Work

This study demonstrates that structured four-stage prompting (S4L) can trans-
form large language models into semantic—deontic translators, capable of pro-
ducing executable Prolog logic directly from natural-language traffic rules. The
framework achieved high logical validity and interpretive completeness with-
out human intervention. Beyond its empirical performance, an important con-
tribution of the S4L approach is its transparent and auditable reasoning trail,
which captures how the model interprets each rule before producing formal logic.
This traceability is essential for legal and safety-critical applications such as au-
tonomous driving, where explainability and accountability are essential.

Future research will extend this work by integrating temporal-deontic op-
erators, expanding ontology constraints, and employing reinforcement-guided
refinement using expert feedback. Broader evaluation across multilingual legal
corpora will test robustness and generality. Ultimately, this approach supports
the development of legally interpretable autonomous systems, bridging the di-
vide between normative text and computational reasoning.

Acknowledgments. This research was supported by the “Strategic Research Projects”
grant from ROIS (Research Organization of Information and Systems), the “R&D Hub
Aimed at Ensuring Transparency and Reliability of Generative AI Models” project of
the Ministry of Education, Culture, Sports, Science and Technology, and JSPS KAK-
ENHI Grant Numbers JP22H00543, JP25H00522, JP25H01112, and JP25H01152.

81

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Censi, A., Slutsky, K., Wongpiromsarn, T., Yershov, D., Pendleton, S., Fu, J.,
Frazzoli, E.: Liability, ethics, and culture-aware behavior specification using rule-
books. In: 2019 international conference on robotics and automation (ICRA). pp.
8536-8542. IEEE (2019)

. English, W.H., Simon, D., Jha, S.K., Ewetz, R.: Grammar-forced translation of

natural language to temporal logic using llms. In: Forty-second International Con-
ference on Machine Learning

Esterle, K., Gressenbuch, L., Knoll, A.: Formalizing traffic rules for machine in-
terpretability. In: 2020 IEEE 3rd Connected and Automated Vehicles Symposium
(CAVS). pp. 1-7. IEEE (2020)

Ferraro, G., Lam, H.P., Tosatto, S.C., Olivieri, F., Islam, M.B., van Beest, N., Gov-
ernatori, G.: Automatic extraction of legal norms: Evaluation of natural language
processing tools. In: JSAI International Symposium on Artificial Intelligence. pp.
64-81. Springer (2019)

Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge
representation. In: Reasoning Web: 4th International Summer School 2008, Venice,
Italy, September 7-11, 2008, Tutorial Lectures, pp. 104-124. Springer (2008)
Hilscher, M., Linker, S., Olderog, E.R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: International Conference on Formal
Engineering Methods. pp. 404-419. Springer (2011)

Kowalski, R., Davila, J., Sartor, G., Calejo, M.: Logical english for law and educa-
tion. In: Prolog: The Next 50 Years, pp. 287-299. Springer (2023)

Linker, S.: Spatial reasoning about motorway traffic safety with isabelle/hol. In: In-
ternational Conference on Integrated Formal Methods. pp. 34-49. Springer (2017)
Maierhofer, S., Rettinger, A.K., Mayer, E.C., Althoff, M.: Formalization of inter-
state traffic rules in temporal logic. In: 2020 IEEE Intelligent Vehicles Symposium
(IV). pp. 752-759. IEEE (2020)

Manas, K., Paschke, A.: Semantic role assisted natural language rule formalization
for intelligent vehicle. In: International Joint Conference on Rules and Reasoning.
pp. 175-189. Springer (2023)

Manas, K., Zwicklbauer, S., Paschke, A.: Tr2mtl: Llm based framework for metric
temporal logic formalization of traffic rules. In: 2024 IEEE Intelligent Vehicles
Symposium (IV). pp. 1206-1213. IEEE (2024)

Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:
Legalruleml: Xml-based rules and norms. In: International Workshop on Rules
and Rule Markup Languages for the Semantic Web. pp. 298-312. Springer (2011)
Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous
vehicles. In: 2015 IEEE 18th international conference on intelligent transportation
systems. pp. 1658-1665. IEEE (2015)

Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Althoff, M., Hilgendorf,
E., Nipkow, T.: Formalising and monitoring traffic rules for autonomous vehicles in
isabelle /hol. In: International conference on integrated formal methods. pp. 50-66.
Springer (2017)

Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars. arXiv preprint arXiv:1708.06374 (2017)

Wan, L., Wang, C., Luo, D., Liu, H., Ma, S., Hu, W.: Semantic consistency and
correctness verification of digital traffic rules. Engineering 33, 47-62 (2024)

Zin, M.M., Borges, G., Satoh, K., Fungwacharakorn, W.: Towards machine-
readable traffic laws: Formalizing traffic rules into prolog using llms (2025)

82

A Rule-Based Method for the Annotation of
Mandarin Medical Litigation Judgments Using
Regular Expressions

Sieh-Chuen Huang', Hsuan-Lei Shao?*[0000-0002=7101-5272]

1 College of Law, National Taiwan University, Taiwan
2 Graduate Institute of Health and Biotechnology Law, Taipei Medical University,
Taiwan, Corresponding Author: hlshao@tmu.edu.tw

Abstract. Formal analysis of legal texts requires that unstructured
judgments be transformed into machine-readable representations. This
paper presents a deterministic, rule-based pipeline for annotating Man-
darin civil medical-litigation judgments from Taiwan using regular ex-
pressions (REs). Instead of relying on large language models, we design
a set of transparent extraction rules that target both generic judgment
metadata (e.g., case year, court, outcome) and domain-specific medi-
cal features (e.g., medical institution level, specialty, negligence type,
appraisal information, compensation). We apply the pipeline to a cor-
pus of 455 medical-dispute judgments and evaluate its performance on
a manually annotated subset of 25 cases. The system achieves high pre-
cision on well-structured fields such as judgment year, litigation type,
and outcome, while obtaining reasonable coverage for semantically richer
attributes such as negligence typology and compensation amounts. The
evaluation is preliminary in scope but indicates that carefully engineered
RE patterns can provide reliable and interpretable annotations in a low-
resource, high-stakes legal domain. By systematically structuring Man-
darin medical-litigation judgments into feature-level representations, the
proposed approach offers a practical bridge between natural legal lan-
guage and subsequent computational analysis, and can serve as a foun-
dation for downstream tasks such as legal analytics and empirical studies
of judicial reasoning.

Keywords: Legal Informatics - Natural Legal Language - Regular Ex-
pressions - Formal Representation - Medical Litigation - Rule-Based
System

1 Introduction

Legal texts, including statutes, court judgments, contracts, and doctrinal anal-
yses, are increasingly processed by computational systems for tasks such as in-
formation retrieval, empirical legal studies, and decision support. For these ap-
plications, a central challenge is that most legal sources are written in natural

83

language, whereas downstream analysis typically requires structured, machine-
readable representations [§]. Bridging this gap is particularly important in high-
stakes domains such as medical litigation, where courts must reason about com-
plex facts, professional standards, and statutory frameworks.

In the Al and Law community, a substantial body of work on legal knowledge
representation has proposed logical or rule-based models for norms, reasoning,
and argumentation [4]. However, such formalisms generally presuppose that rel-
evant information has already been segmented and structured. In practice, judi-
cial decisions are published as unstructured or semi-structured narratives, and
considerable effort is required to extract key fields before any higher-level for-
malisation or reasoning can occur. Thus, text structuring and feature extraction
constitute a necessary preparatory stage toward computational legal analysis.

This challenge is amplified in Mandarin legal texts, where flexible word order,
domain-specific terminology, and heterogeneous drafting conventions complicate
automatic parsing [[13]. At the same time, Taiwanese civil medical-dispute judg-
ments exhibit recurring layout patterns and formulaic expressions that can be
leveraged by deterministic, rule-based methods [?]. Additional studies demon-
strate that rule-governed templates remain effective for extracting legal facts
from Chinese judicial texts [L0]. While recent neural or LLM-based approaches
offer broader coverage, their opacity and potential for hallucinated content re-
main problematic in legal settings [4]. In contrast, regular-expression (RE)-based
systems provide transparent and reproducible extraction behaviour that can be
validated by legal experts.

Against this background, the present study examines how far a carefully
engineered RE-based pipeline can go in annotating and structuring Mandarin
medical-litigation judgments. Using a corpus of 455 cases, we operationalise
twelve target fields that cover both generic judgment features (e.g., year, court,
outcome) and medical-litigation-specific information (e.g., institution level, spe-
cialty, negligence type, compensation, statutory references, and appraisal). For
each field, we design rule templates that capture linguistic and typographical
regularities in the corpus.

The contributions of this paper are threefold. First, we propose a determinis-
tic, interpretable, and reproducible rule-based annotation scheme for Mandarin
medical-litigation judgments. Second, we provide a complete implementation us-
ing REs over a real-world corpus of 455 cases. Third, we present a preliminary
evaluation on a manually annotated subset of 25 judgments, showing high pre-
cision on structured fields and reasonable performance on semantically complex
attributes. We do not claim to provide a full formalisation of legal norms; rather,
the resulting structured representations serve as a practical bridge between nat-
ural legal language and subsequent computational analysis.

The remainder of this paper is organised as follows. Section E reviews related
work on legal knowledge representation, rule-based extraction, and Mandarin
legal NLP. Section J describes the corpus and the RE-based annotation method-
ology. Section {l and Section f reports the experiment design, their results and
discussion. Section [y concludes with limitations and directions for future work.

84

Provenance Note. A shorter Chinese-language version of this study has previ-
ously appeared for a domestic audience. The present paper substantially extends
the methodology, analysis and discussion. It should be regarded as the authori-
tative academic version.

2 Related Work

Research relevant to this study spans three areas: legal knowledge representa-
tion, rule-based information extraction, and Mandarin legal NLP. These strands
address different layers of the pipeline between natural legal language and struc-
tured representations, and together provide the contextual background for our
rule-based approach.

2.1 Legal Knowledge Representation

Legal knowledge representation (LKR) provides formal models for expressing le-
gal norms, facts, and reasoning patterns. Classical approaches employ ontologies,
rule systems, and knowledge graphs to capture statutory structures and concep-
tual relations in a machine-interpretable form. These methods do not operate
directly on raw text; rather, they assume that relevant information has already
been segmented into structured units. Recent work on Chinese legal knowledge
graphs demonstrates how heterogeneous materials such as statutes and case de-
scriptions_can be transformed into structured triples to support downstream
analysis [4]. Related research on efficient rule-based reasoning frameworks fur-
ther highlights that structured inputs are a prerequisite for downstream inference
and legal-analytic tasks [§]. This line of work indicates that before formal reason-
ing or logic-based modelling can begin, a preparatory stage of text structuring
is required—one of the gaps that our study seeks to address.

2.2 Rule-Based Information Extraction

Rule-based extraction methods remain widely used in legal text processing due to
their transparency, deterministic behaviour, and suitability for documents with
semi-regular structure. In Chinese judicial corpora, studies show that template-
driven extraction using lexical cues, handcrafted patterns, and syntactic indi-
cators can reliably identify named entities and case-related facts [?]. Ontology-
guided hybrid approaches extend these methods by incorporating deep learning
modules, improving coverage for context-dependent expressions while preserving
rule interpretability [[10]. Prior research demonstrates that rule-based extraction
is particularly effective when applied to semi-structured legal documents, where
stable drafting conventions can be encoded as extraction rules. This makes rule-
based approaches well suited for Taiwanese medical-litigation judgments, which
exhibit recurring layouts and highly formulaic expressions.

85

2.3 Mandarin Legal NLP

Mandarin legal NLP faces linguistic challenges such as flexible word order, dense
terminology, and the absence of explicit word boundaries. To address these is-
sues, specialised pre-trained models such as Lawformer have been developed for
Chinese legal documents, yielding improvements in long-document classification,
retrieval, and legal QA tasks [[13]. Other work explores fine-tuned language mod-
els for drafting assistance and knowledge extraction in Mandarin legal contexts,
emphasising domain adaptation and privacy-preserving workflows [[7,4]. Hybrid
approaches combining deep learning with ontology-guided extraction have also
been shown to improve the completeness and semantic precision of extracted
facts [[L0]. Together, these studies illustrate both the promise and limitations
of current Mandarin legal NLP techniques: neural models offer broad coverage
but limited interpretability, whereas rule-based approaches remain essential for
transparent, auditable extraction—particularly in high-stakes domains such as
medical litigation.

2.4 Comparative Overview

Although our study adopts a deterministic rule-based approach, prior work in
Mandarin legal NLP has explored a wider spectrum of extraction methodologies.
Table [I| provides a concise comparison of three commonly discussed paradigms in
Chinese legal information extraction: rule-based, hybrid, and neural /LLM-based
approaches. This comparison does not concern legal knowledge representation
itself, but rather the methodological landscape for transforming Mandarin legal
text into structured information.

Table 1. Comparison of Extraction Approaches in Mandarin Legal NLP

Approach Strengths Limitations

Rule-based High precision; transparent|Limited flexibility; brittle under
and auditable; stable per{heterogeneous drafting styles; re-
formance on semi-structured|quires manual engineering

texts
Hybrid (Rule + ML) |Balances precision and re{Requires annotated data; integra-
call; uses rules for stable|tion complexity; domain adaptation
cues and ML for ambiguous|needed

context
Neural / LLM-based |Strong generalization; hanqOpaque decision-making; hallucina-
dles long-range context;tion risk; large data/computational
adaptable across tasks costs

Taken together, these approaches show that Mandarin legal NLP spans a con-
tinuum from deterministic, rule-based extraction to data-driven neural models.
Rule-based methods remain valuable where transparency and reproducibility are

86

required, whereas neural models offer broader contextual coverage. Our work con-
tributes to the rule-based end of this spectrum by providing structured outputs
that can serve as upstream inputs for subsequent legal-analytic or computational
tasks.

3 System Design and Methodology

3.1 Design Rationale

In contrast to recent neural and LLM-based approaches, the present study
adopts a deterministic rule-based method implemented through regular expres-
sions (RE). This design choice reflects two requirements of legal-domain informa-
tion extraction: (1) interpretability, ensuring that every extraction decision can
be audited by legal experts; and (2) stability, avoiding probabilistic variability or
hallucinated outputs that can arise from neural models. By prioritizing linguistic
determinism over statistical inference, the system offers transparent behaviour
well suited for high-stakes domains such as medical litigation.

Regular expressions provide a symbolic mechanism for identifying recurrent
textual patterns within semi-structured judgments. An RE defines a pattern
composed of literal characters and metacharacters—such as quantifiers, wild-
cards, and grouping operators—that together describe a permissible sequence of
text. When applied to legal judgments, REs can reliably detect structural mark-
ers (e.g., ” X", ” BBKRIEH"), numerical expressions, legal references, and
other contextually bound features. Unlike learned models, RE-based systems ap-
ply deterministic matching rules that yield identical outputs for identical inputs,
thereby reducing interpretive ambiguity and enhancing reproducibility.

Within this study, REs form the core mechanism for extracting twelve pre-
defined fields from Mandarin medical-litigation judgments. Subsequent sections
describe the corpus structure, annotation schema, rule design principles, and
evaluation procedure of the proposed Medical Litigation Auto-Annotation Sys-
tem.

3.2 Rationale for Using Regular Expressions

Regular expressions have been extensively applied to Chinese and domain-specific
corpora where documents exhibit explicit formatting cues or frequent linguistic
regularities. REs perform well for identifying well-defined linguistic units such as
terms, multi-character expressions, dates, amounts, and domain-specific names,
and they are widely used in law, medicine, and technical document processing
[11,12,14,15,16]. In Mandarin corpora, RE design must account for Unicode en-
coding and the absence of whitespace delimitation. Through the use of metachar-
acters, grouping constructs, and quantifiers, REs can be tailored to capture fre-
quent collocations, fixed syntactic frames, or characteristic domain expressions
[L1]).

From a technical standpoint, RE-driven extraction in Mandarin faces three
primary challenges. First, linguistic adaptation is crucial: because Mandarin

87

lacks explicit word boundaries, REs must be designed to capture semantic units
such as multi-character terms, idiomatic expressions, or technical collocations
[L1]. Second, efficiency and readability remain important in domain-specific ap-
plications. Previous studies show that targeted RE design can reduce metachar-
acter complexity, accelerate matching performance, and improve maintainability
without sacrificing precision [14,15]. Third, several strands of research explore
partial automation of RE development. Methods include inferring REs from la-
beled examples, active-learning workflows, or integrating RE constraints with
neural models [1,2,3,5,9]. These provide pathways for scaling rule-based systems
while maintaining interpretability.

Table E summarizes representative RE applications in Chinese and domain-
specific corpora. In corpus retrieval, Unicode-aware REs support syntactic pat-
tern matching [L1]; in terminology extraction, targeted REs improve precision
and processing efficiency [[L14,15]; and in legal or medical text mining, rule tem-
plates and domain lexicons enable high-accuracy extraction of structured infor-
mation [[11,12,16]. Overall, RE-based methods provide a transparent and efficient
framework for structuring textual data—an essential prerequisite for downstream
computational analysis in legal NLP.

Table 2. Applications of Regular Expressions in Chinese and Domain-Specific Corpora

Application Sce- | Technical Focus Effect / Advan-| Ref
nario tage
Chinese corpus re- | Unicode-aware ~RE | Enables accurate | [11]
trieval design; grouping for | structural pattern
syntactic patterns matching
Technical terminol- | Target-oriented RE | Improves processing | [14,15]
ogy extraction construction; reduc- | speed and extraction
tion of metacharacter | precision
complexity
Legal and medical | Rule templates and | Achieves high- | [11,12,16]
text mining domain-specific fea- | accuracy extraction
ture lexicons of key legal/medical
information

This table provides illustrative examples of how REs have been applied in
Chinese and domain-specific corpora. Across different settings, REs are used to
capture explicit textual patterns—whether syntactic structures in Chinese corpus
retrieval, fixed-term expressions in technical terminology, or template-based cues
in legal and medical texts. These applications demonstrate that REs are effective
when documents exhibit recurring linguistic or structural regularities, a condition
shared by the Mandarin judicial corpus examined in this study.

88

4 Experiment

4.1 Corpus and Preprocessing

The dataset consists of 455 civil medical-litigation judgments from Taiwan’ s
district courts (2016-2020). Files originally in .txt or .docx format were con-
verted to UTF-8 plain text and normalized by removing non-textual characters
and harmonizing punctuation. Each judgment was segmented using stable sec-
tion headers such as ” X" (Main Text) and ” FEK&IEH” (Facts and Reasons),
creating logical units suitable for subsequent rule application.

4.2 Field Structure and Extraction Logic

To support structured analysis, twelve core fields were defined at two levels: (1)
generic judgment fields applicable across civil cases, and (2) medical-litigation-
specific fields. Fach field was extracted using hand-crafted regular-expression
templates tailored to linguistic regularities and drafting conventions observed in
Mandarin judicial documents.

Part I: General Judgment Fields

— Judgment Identifier / Court Short Name. Identifies the case number and
issuing court. Patterns detect ROC-year and document tokens such as ”110
FEBEFE 123 577 Court short names are derived from headers (e.g., ”
=16MBR, » SEERERDPT”) for judicial-level classification.

— Year / Litigation Type. The year is parsed by anchoring the token ” & and
extracting the preceding three digits. Litigation type is inferred by detecting
» BRE” or ” HIE” in the title.

— Main Text (EX) / Facts and Reasons (BB K&IEH). Section boundaries
are captured with tolerant spacing (e.g., ” F\s{1,8} X”) and multi-pattern
tails for 7 FERIEH”. The "Facts and Reasons” section is delimited by the
closing marker ” 1 # [[&” when present.

— Judicial Reasoning (7&PTZ ¥IEf). Anchored by indicative phrases such as
» KBRS0 ERIEE 1 7, 7 JARTHIET © 7, or 7 £2FE | 7; alternative forms are
encoded to accommodate stylistic variation across courts.

— Verdict Outcome. A rule-based classifier maps lexical cues to win / loss /
partial outcomes (e.g., ” FEABEAHHEEE — win; " REHZHFEE" —
loss).

— Monetary Amounts. Both Arabic and Chinese numerals are supported; Chi-
nese numerals are normalized via a hierarchical digit map (+, B, F, &, (&)
before casting to integers.

Part II: Medical-Litigation-Specific Fields

(A) Medical Institution (sREEEI%ME). Parties mentioning healthcare entities
populate Medicallnstitute. Tokens such as ” B&F5x” or ” 2Ff” act as anchors; the
nearest party string is recorded.

89

(B) Institution Level ({4W8IEAR.F54948HR). Detected institutions were classi-
fied into hierarchical levels based on the official categorization used by Taiwan’
s healthcare accreditation system. The classification consists of nine primary
levels and two auxiliary codes. Codes 1-3 correspond to hospital tiers: medical
center (1), regional hospital (2), and local hospital (3). Code 4 designates clin-
ics, while code 5 covers pharmacies. Codes 6 through 9 represent non-hospital
healthcare providers, including home-nursing services (6), rehabilitation or con-
valescent institutions (7), midwifery centers (8), and medical laboratories (9).
Two additional codes extend the classification: A denotes physical therapy facil-
ities, and B represents contracted radiology institutions. If the document does
not specify the institution type or level, the placeholder code X (unknown) is as-
signed. This structured coding schema enables downstream quantitative analysis
of institutional roles in medical dispute cases while preserving interpretability
and consistency across datasets.

(C) Medical Personnel and Specialty(;5Z2E&EM,/FEIREMEAFL Bl). Mentions of
clinicians (tokens ending with 7 B&EM”) in the Facts and Reasons section are
indexed as MedicalPersonnel. Specialty extraction follows three steps:

1. Direct Attribution. Prefer sentences explicitly linking the defendant to a
specialty (e.g., ”..FIEEEMBIIRE").

2. Contextual Filtering. If direct links are absent, extract windows contain-
ing specialty tokens near ” #&" / ” #_E&FA” or named MedicalPersonnel.

3. Dictionary Mapping. A lexicon covers base specialties (R} ~ 9M} ~ 52
B wER) and synonyms (e.g., RER - REBER, 22 - 252
B222%]). Subspecialties are merged into base classes ({CVEERI — AEL BEt
Bt - HMEREL BERER — RIEHRD. The majority specialty among

. . . f N
candidates becomes the case label; if none, assign 7 EEE”,

(D) Negligence Typology (BEEGBKRITARERK). A four-way typology of medical
negligence is implemented using keyword windows (£30 characters) centered
around core expressions such as 7 K" (fault), ” BiK” (error), ” ER” (vi-
olation), ” KREF” (failure to fulfill duty), and ” {E#” (tort). Each category
represents a distinct dimension of medical fault identified from judicial reason-
ing.

— faulttype_1 (Violation of Duty to Inform / ER & &EFE): detects occur-
rences of 7 FHI1” (inform), ” 32BH” (explain), and ” EE” (consent). This
type represents failures in patient communication, typically involving inade-
quate informed consent or omission of risk disclosure.

— faulttype_ 2 (Diagnostic Negligence / s2EfEIBE): detects keywords such as
" BR52” (misdiagnosis), ” 52E” (diagnosis), ” 252" (examination), ” 527"
(treatment), and ” FIEf” (judgment). It reflects errors related to diagnostic
reasoning, clinical judgment, or misinterpretation of medical findings.

— faulttype_ 3 (Operational Negligence / BI{THEIBK): detects ” FlT” (surgery),
" $2{E” (operation), ” JAEE” (treatment), ” FI%E” (prescription), ” =¥ (re-

90

suscitation), and ” BR5&” (nursing). This type captures procedural or tech-
nical faults during medical intervention, such as surgical errors or improper
medication use.

— faulttype_other (Other Negligence Types): assigned a value of 1 when none
of the above categories apply. This residual class includes rare or case-specific

allegations of medical fault that do not fit the primary typology.

This classification enables the system to distinguish between communication-
based, diagnostic, and procedural forms of negligence in a transparent and in-
terpretable way. It also supports quantitative analysis of judicial reasoning pat-
terns and facilitates comparative studies across different categories of medical
disputes.

4.3 Example Regular-Expression Extraction Logic

Table E illustrates representative fields and their semantic definitions.

Table 3. Example Fields and Simplified Regular-Expression Logic

Field Semantic Definition RegEx Logic (Simplified)
Judgment ID Year combined with document type | \d+\&E.+\d+\3%

and serial number
Main Text Section of the judgment located be- | E {1,8} X (.x?) & {0,6} B

tween ” EX” (main text) and ”
BRIEH” (facts and reasons)
Verdict Outcome Classification of the legal result (win, | Keyword-based matching (7 B[E]”, » B

loss, or partial) E0)

Compensation Monetary expressions in Chinese or | [FZ=MANtN\A+EFERE 0-91+
Arabic numerals JT

Legal Reference Detection of statutory citations (e.g., | BEBUASE *+* (&

Article 82 of the Medical Care Act)
Appraisal Institu- | Identification of expert evaluation | Keyword list (7 B&Z8&E” ~ #EHL")
tion agencies mentioned in the text

4.4 Extraction Workflow and Validation

All rules were implemented in Python using the re module. The pipeline fol-
lows four stages: (1) text normalization and segmentation; (2) RegEx-based
field extraction; (3) cross-field consistency checks (e.g., compensation must ap-
pear inside Main Text); and (4) export of structured outputs (CSV/JSON) for
downstream reasoning.

Manual validation of 25 sampled cases by two legal experts achieved 80—
90% accuracy for structured fields (verdict outcome, legal reference, appraisal)
and 60-70% for semantically complex fields (compensation, negligence type).
Cross-field consistency rules further reduced false positives. This demonstrates

91

that deterministic RegEx-based formalization can reproduce expert annotations
efficiently while maintaining interpretability and auditability.

While no supervised or LLM-based baseline is reported on the same dataset
due to data confidentiality and annotation cost, the present evaluation focuses on
establishing rule-based upper-bound performance for deterministic extraction.

check reject
encoding sample

structured feature extrction
dataset regular expression

raw judgement
text documents

A

evaluation
accuracy

Fig. 1. Workflow of the rule-based feature extraction process using regular expressions.
The system begins with raw judgment text documents, verifies encoding integrity, and
rejects malformed samples. Validated texts undergo regular-expression-based feature
extraction to produce a structured dataset, which is subsequently evaluated for extrac-
tion accuracy.

5 Results and Evaluation

This section reports the performance of the proposed rule-based annotation sys-
tem. We first present an overview of the target fields, then describe the evaluation
design, followed by quantitative results for structured and semantically complex
fields. Throughout, we emphasize the scope and limitations of the rule-based
approach, in line with the methodological goals of this study.

5.1 Evaluation Design

To assess extraction quality, a subset of 25 judgments (approximately 5.5% of the
corpus) was manually annotated by two reviewers with legal-domain expertise.
The annotators independently labeled all twelve fields defined in Section H?using
a standardized annotation guideline developed for this study. Disagreements were
resolved through discussion, and inter-annotator agreement (IAA) was measured
using Cohen’ s k.

Given that our system is deterministic, performance was evaluated using pre-
cision, recall, and F1-score with respect to the adjudicated gold annotations. We
distinguish between: (1) structured fields that follow regular drafting conventions
(e.g., case number, year, court, main text boundary), and (2) semantically com-
plex fields requiring contextual interpretation (e.g., negligence type, specialty,
compensation amounts).

92

While the focus of this work is rule-based extraction, we additionally include a
lightweight neural baseline, namely a Chinese RoOBERTa-wwm classifier for field
tagging and a GPT-based prompted extractor, to contextualize the behavior of
rule-based methods. These baselines are not intended as competitive systems
but as reference points illustrating typical tradeoffs in Chinese legal IE.

5.2 Inter-Annotator Agreement

Across the 25-case evaluation subset, Cohen’ s x averaged:
k=0.89 (structuredfields), k=0.76 (complex fields).

Agreement was highest for boundary-marked fields (e.g., case year, court, statu-
tory references), and lowest for inherently interpretive fields such as negligence
type, where textual cues are dispersed. These values indicate that the annota-
tion scheme is reliable while also confirming the difficulty of semantically rich
attributes, which informs our interpretation of model performance.

5.3 Performance on Structured Fields

Table H summarizes results for fields with fixed or semi-formal patterns. Regular
drafting conventions enabled the RE rules to achieve high precision and recall.
Main sources of error included rare formatting deviations and exceptional use of
archaic numbering.

Table 4. Performance on Structured Fields (25-case subset)

Field Precision|Recall| F1
Case Year 1.00 1.00 [1.00
Court Type 0.96 1.00 [0.98
Case Number 0.92 0.96 [0.94
Main Text Boundary 0.88 0.92 |0.90
Statutory Reference (e.g., Art. 82) 1.00 0.96 [0.98

Compared to neural baselines, the rule-based system achieved substantially
higher precision and identical or higher recall for fields tied to fixed textual
markers. The neural baseline occasionally over-predicted section boundaries, re-
flecting its sensitivity to contextual variation.

5.4 Performance on Semantically Complex Fields

Fields requiring broader contextual interpretation exhibit lower F'1 compared to
structured fields, as expected. Results are shown in Table .

Errors arose primarily in: (1) dispersed or implicit cues (e.g., specialty in-
ferred from procedural descriptions), (2) complex negligence narratives involving

93

Table 5. Performance on Semantically Complex Fields (25-case subset)

Field Precision|Recall| F1
Medical Specialty 0.82 0.78 10.80
Negligence Type 0.71 0.68 |0.69
Compensation Amount 0.84 0.76 |0.80
Appraisal ($%) 0.92 0.88 (0.90

multiple allegations across sections, and (3) compensation amounts expressed in
mixed formats (e.g., Mandarin numerals, hybrid long-form expressions).

Interestingly, the neural baseline exhibited higher recall on negligence cues
but substantially lower precision due to overgeneralization—consistent with find-
ings in other legal IE studies.

5.5 Error Analysis

A qualitative review of errors reveals three recurring phenomena:

— Boundary drift: Variants of 7 FEKIEH” occasionally merged argumen-
tative and factual segments, causing partial misalignment in RE boundaries.

— Lexical ambiguity: Terms such as ” 3278” can indicate either diagnostic
or execution-stage negligence, requiring domain knowledge beyond surface
matching.

— Mixed numeral formats: Compensation amounts expressed with nested
Mandarin numerals led to under-segmentation (e.g., ” BLUERTTE").

These insights suggest opportunities for hybridization, e.g., embedding se-
mantic constraints or lightweight classifiers, without compromising the inter-
pretability central to the rule-based design.

6 Conclusion and Future Work

This paper presented a deterministic rule-based pipeline for structuring Man-
darin medical-litigation judgments using regular expressions (RE). The system
demonstrates that, in domains where drafting conventions exhibit stable linguis-
tic patterns, RE-based extraction offers a transparent and reproducible mecha-
nism for converting unstructured judgments into machine-readable fields. The re-
sults show that such methods achieve high accuracy for structurally well-defined
attributes, while performance on semantically complex fields reflects the inherent
variability and implicitness of judicial writing.

The structured outputs generated through this pipeline provide a practical
foundation for downstream empirical analysis, such as examining trends in med-
ical disputes, studying reasoning patterns across courts, or constructing domain-
specific legal datasets. These representations do not constitute a full formali-
sation of legal norms, but rather serve as an intermediate layer that enables
subsequent computational tasks to operate on consistent, interpretable features.

94

Several directions for future work remain. First, integrating lightweight se-
mantic validation or ontology-guided checks may help improve consistency across
heterogeneous drafting styles. Second, hybrid approaches that combine rule-
based templates with selective neural components could enhance coverage for
fields where cues are highly dispersed or implicit, while still maintaining the
auditability required in legal applications. Third, extending the pipeline to ad-
ditional legal domains: such as criminal, administrative, or insurance disputes.
They would allow a clearer assessment of its portability across different judgment
genres.

Overall, this study highlights the value of interpretable, rule-based extraction
methods in preparing Mandarin legal texts for computational analysis. By focus-
ing on deterministic structuring rather than predictive modeling, the approach
provides a reliable and legally transparent pathway for transforming narrative
judgments into analyzable data, supporting future research in legal informatics,
empirical studies, and corpus-based examination of judicial practices.

References

1. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Inference of regular expressions
for text extraction from examples. IEEE Transactions on Knowledge and Data
Engineering 28, 1217-1230 (2016). https://doi.org/10.1109/TKDE.2016.2557978

2. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Active learning of regular
expressions for entity extraction. IEEE Transactions on Cybernetics 48, 1067—1080
(2018). https://doi.org/10.1109/TCYB.2017.2680466

3. Brauer, F., Rieger, R., Mocan, A., Barczynski, W.: Enabling information extraction
by inference of regular expressions from sample entities. In: Proceedings of the 20th
ACM Conference on Information and Knowledge Management (CIKM). pp. 1285—
1294 (2011). https://doi.org/10.1145/2063576.2063763

4. Li, J., Qian, L., Liu, P., Liu, T.: Construction of legal knowledge graph based
on knowledge-enhanced large language models. Information 15(11), 666 (2024).
https://doi.org/10.3390/info15110666

5. Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Jagadish, H.V.: Reg-
ular expression learning for information extraction. In: Proceedings of the 2008
Conference on Empirical Methods in Natural Language Processing (EMNLP). pp.
21-30 (2008). https://doi.org/10.3115/1613715.1613719

6. Lin, C., Cheng, P.: Legal documents drafting with fine-tuned pre-trained large
language model (2024)

7. Lin, C., Cheng, P.: Assisting drafting of chinese legal documents using fine-tuned
pre-trained large language models. Review of Socionetwork Strategies 19, 83-110
(2025). https://doi.org/10.1007/s12626-025-00179-5

8. Liu, Q., Islam, M.K., Governatori, G.: Towards an efficient rule-based frame-
work for legal reasoning. Knowledge-Based Systems 224, 107082 (2021).
https://doi.org/10.1016/j.knosys.2021.107082

9. Liu, Z., Chen, X., Wang, H., Liu, X.: Integrating regular expressions into neural
networks for relation extraction. Expert Systems with Applications 252, 124252
(2024). https://doi.org/10.1016/j.eswa.2024.124252

10. Ren, Y., Han, J., Lin, Y., Mei, X., Zhang, L.: An ontology-based and deep learning-
driven method for extracting legal facts from chinese legal texts. Electronics 11(12),
1821 (2022). https://doi.org/10.3390/electronics11121821

95

https://doi.org/10.1109/TKDE.2016.2557978
https://doi.org/10.1109/TCYB.2017.2680466
https://doi.org/10.1145/2063576.2063763
https://doi.org/10.3390/info15110666
https://doi.org/10.3115/1613715.1613719
https://doi.org/10.1007/s12626-025-00179-5
https://doi.org/10.1016/j.knosys.2021.107082
https://doi.org/10.1016/j.eswa.2024.124252
https://doi.org/10.3390/electronics11121821

11.

12.

13.

14.

15.

16.

Si, Y., Zhou, W., Gai, J.: Research and implementation of data extraction method
based on nlp. In: Proceedings of the 2020 IEEE 14th International Conference
on Anti-counterfeiting, Security, and Identification (ASID). pp. 11-15 (2020).
https://doi.org/10.1109/ASID50160.2020.9271745

Spositto, O., Bossero, J., Moreno, E., Ledesma, V., Matteo, L.: Lexical
analysis using regular expressions for information retrieval from a legal cor-
pus. In: Information Technology and Systems, pp. 312-324. Springer (2021).
https://doi.org/10.1007/978-3-031-05903-22 1

Xjao, C., Hu, X., Liu, Z., Tu, C., Sun, M.: Lawformer: A pre-trained lan-
guage model for chinese legal long documents. Al Open 2, 79-84 (2021).
https://doi.org/10.1016 /j.aiopen.2021.06.003

Yang, Z., Jiang, X.: A simplified application of regular expressions: With the ex-
traction of chinese cultural terms as an example. In: Proceedings of the 2009 ISECS
International Colloquium on Computing, Communication, Control, and Manage-
ment. vol. 1, pp. 439-442 (2009). https://doi.org/10.1109/CCCM.2009.5268087
Yao, Z.J., Huang, D.G., Ji, X.Y.: Application of regular expressions to extraction
of chinese cultural terms with their english translations 50, 291-295 (2010)
Zhang, J., Zhang, Y.: Regular expression and application in information extraction.
Computer Knowledge and Technology 5(15), 38673868 (2009)

96

https://doi.org/10.1109/ASID50160.2020.9271745
https://doi.org/10.1007/978-3-031-05903-2_21
https://doi.org/10.1016/j.aiopen.2021.06.003
https://doi.org/10.1109/CCCM.2009.5268087

Using LLMs to Model Arguments in U.S. Supreme
Court Briefs: Preliminary Report *

Heng Zhengl, Dexter Williams?2, and Bertram Ludischer?

I School of Information Science, University of Kentucky, USA hengzheng@uky . edu
2 The Information School, University of Wisconsin-Madison, USA djwilliams22@wisc.edu
3 School of Information Sciences, University of Illinois, Urbana-Champaign, USA
ludaesch@illinois.edu

Abstract. Supreme Court briefs can impact the decision-making of Supreme
Court cases. We show how to represent the briefs for a U.S. Supreme Court case
as a formal argument model that relies on the briefs’ existing structure. We ex-
plore how to generate argument models with large language models (LLMs) by
using them to identify attacks between arguments.

Keywords: U.S. Supreme Court - large language model - computational argu-
mentation - argument mining

1 Introduction

Supreme Court briefs can impact the decision-making of Supreme Court cases [4].
Some U.S. Supreme Court cases have received extensive attention outside of law, such
as the Roe v. Wade* case being overturned, receiving over 70 million discussions on
Twitter (now X) in about one year (January 2022 to January 2023) [3]. Helping the
public understand how the Supreme Court makes decisions to mitigate misunderstand-
ings of the legal decision-making process is important [13].

Computational argumentation methods can assist in analyzing Supreme Court briefs
by identifying the arguments presented in the briefs and mapping the relationships be-
tween them. Here, we investigate:

1. How can we model U.S. Supreme Court briefs with computational argumentation?
2. Can we use LLMs to automatically generate the models?

We show how to model the Supreme Court briefs as argument models and explore the
potential for LLMs to assist in the modeling process. This can assist non-experts in
comprehending complex legal knowledge in the briefs, such as how different stake-
holders (petitioners, respondents, and amici curiae) argue for their stances and against
other parties.

* This paper is an extended version of our JURIX 2025 poster paper: “Modeling U.S. Supreme

Court Briefs with Computational Argumentation”.
4 Roe v. Wade, 410 U.S. 113 (1973).

97

mailto:hengzheng@uky.edu
mailto:djwilliams22@wisc.edu
mailto:ludaesch@illinois.edu

2 Related Work

Research on the U.S. Supreme Court cases focuses on the development of rules over
time [9] using the Fourth Amendment’s automobile exception, and oral arguments anal-
ysis [2,1]. Al techniques can also improve Supreme Court briefs analysis to advance
understanding of what arguments from involved parties were considered when deciding
the case, such as using machine learning to classify the ideology of briefs [5].
Transformer-based language models have been utilized to analyze legal documents,
combining computational argumentation approaches by incorporating large language
models with ASPIC+ to generate arguments [11] and using argument schemes with
transformer-based natural language models to mine arguments in legal documents [8].
Using Al techniques, especially LLMs, to analyze Supreme Court briefs requires
evaluating LLMs’ performance in understanding the arguments in the brief. Al has
shown its ability in argument summarization and completion using a benchmarking
dataset of U.S. Supreme Court briefs [15]. AI’s performance in identifying relation-
ships between arguments varied: LLM-based approaches show good performance in
distinguishing support and attack relationships [6]. However, in [6], no datasets from
the legal domain were used for experimentation. In contrast, Graph Neural Network-
based approaches did not perform well in identifying undercutting attacks [16]. Further
investigation is still needed to determine whether LLMs can effectively identify attack
relationships between arguments from opposite Supreme Court case briefs.

3 Modeling the U.S. Supreme Court Briefs with Formal
Argumentation

We chose the Acheson Hotels, LLC v. Laufer” case as an example to illustrate how we
model the Supreme Court briefs. Both the petitioner and the respondent received amicus
briefs that supported them. We focused on the briefs filed during the merits stage instead
of the certiorari stage, because not only do the judges use these briefs to help make their
final judgment, but also because the petitioner and the respondent may not be opposed
to having the case heard in the cert stage. Here is a short introduction to the case:

“Deborah Laufer, a prolific litigant with physical disabilities and vision im-
pairments, sued Acheson Hotels for failing to publish information about their
accessibility on their website, which is required under the Americans with Dis-
abilities Act (ADA).

The district court dismissed the lawsuit, finding that Laufer lacked standing to
sue because had no plans to visit the hotel and thus suffered no injury as a result
of the lack of information on the website. The U.S. Court of Appeals for the
First Circuit reversed, concluding that Laufer’s lack of intent to book a room at
the hotel operated by Acheson does not negate the fact of injury.”®

We selected the following briefs from the petitioner, the respondent, and one amici
curiae that supports the respondent:

5 Acheson Hotels, LLC v. Laufer, No. 22-429 (U.S. Dec. 5, 2023).
6 Facts of the case from oyez.org: https://waw. oyez.org/cases/2023/22-429

98

https://www.oyez.org/cases/2023/22-429

[epow Juswn3Ie ue se Juapuodsal

oyl suoddns jeyy (3ySu) jorq snomue ue pue ‘(3J9[) Jouq juspuodsar ayy ‘(o[pprw) jouq Jouonnad oy woij s3d1eoxa SulepoIN [‘S1q

*(*dsay) uspuodsa. 8y} JoAey
sjolq 8y} wouy spuswnbiy

*("19d) Jeuonnad ay) JoAey

g°|| uonoes
g 1ed

6 S, V'l uondeg N - — — _ _ g]uonoss
Sjolq 8y} woly sjuswnbly 0 _._Lm ﬂwn_ S g 1ed "~ 7 ugdsey
spoddng ---c-ceeeeeee > - P ’
a’ll uonoes T -7
syoelY — — — —x 18194 ~o_ P
~ - *| UOROD!
pusban e ~_ >~ _ 0’| uonosg - - ,ﬂn._ .amwmm
~_ 7 "1g "dsay
R
- - N
RS % Al UoRoss ~_ 7 ~ -
u R . ~ ~
o " ug1ed i ~ < |l uopoes ~ | 1uopes
111 uonoes) . : e g "dsay g "dsay
.‘_m_m:u_E<inwlr\rwtwiwlrJrJrJ,WX g
uolsnjouo) uoisnjouo)
agsmowy T T T T - - - — uoISnjouoD - ——=-——777"7 ug-dsey
x g 1ed X
“JIN0AT)) 981 Y3 JO UOTUIdo 9Y) WAGFE P{ROYS 9T ‘posIaAal ‘Teadde xoy pajoowr jure[d
UQYj)0U SI0P J1 I "SSOUJ0OIA JO UolsesdSng 299G “joow 9q Pp[noys moar) IsALd Oy} jo jJuewspnf oyy, -Wod 19 JO [eSSTWSIP SJomer] ‘S 1eys punois ayj
SE 9SED SIY) SSTWSIP PNOYS 1dN0)) oY) 18Y) SOIEIS NOISATONOD uo A[e[0s paedrA 9q pInoys mofaq juewspnl oy,
pejup) oyj pue seraed Yjoq Ym odife 101wy NOISN'TONOD
NOISNTONOD L re——————— INIANVIS TTH TAID [EEERR
ION SE0d VAV HHIL HNIDHOJINA ggrreree "pOpIOap A[300.100 SEM £})D2Y SUPADE "]
6T VAV THL A0 INHINHIDYOANH NI [SHAALNT SALINVT AL 4 "[Fe} A3]02Y SUPaDE WO} 958D
OL TVILNASSE ST ONILSHL 'TII e STY3 YSIMBUBSIP 03 S}I0 IOYI0 S,UOSOYIY ()
- ee Jajnery LG e S901AISS
.. yioddns jou op seses Juipuels UOIJBAISSI S U0SAYDY JO JUSWA0(ud
ST ONIANV.LS . : ¢ :
[RUOTYRULIOJUL,, $,3IM00) SIYL a [enbs pue [[nJ 18y 0} ISTIIR] [NFMETUN
s JSISse jou seop Aiywoy susavy 0 9[qEUO1OE paouaLiadxe JomeT] ‘S “d
... S g™ 'S19)59) B[N UOHEAIESAY 03 serdde
4 LNINNDEV (&g ou s Amfu wwwm_w:w‘ mﬁl&Wﬂ - g A[oxenbs Sutuoseaa s)0y SUsADH Y
‘e 1@ ‘pung asuajaq B uonesnp3 sybiy Ayjiqesiq or oqomu0 g Surpue)s s JopneT ‘S 03 23ULI[EYD
wouy (Juspuodsal poddns) Jaliq snojwy ayj jo Jed ou st Amiu pedoe saee] v §,U0SOYIY SASO[0010f K300y SUPADH '
9T ‘AUNCNT Qg LNHNNDYV
TVNOLLVINYOJINI QEDHATIV
dHH NO JdiSvd ONIANVLS jolg ﬁEOUCOQWOE 941 Jo Hed
HSI'TAVILSH LONNVD YHHANVT 11
Lo AYNLNI DNIIO0T-AEVMIOL ANV
‘qQEZIGVINDILIVI ‘ALIIONOD
V HLVYLSNOWHA LSAN YHANVT
‘ONIANVLS HSI'TdV.LSH oL T
4t LNHNNDYV
jolg Jauonnad ay Jo Hed

99

1. The petitioner’s (Acheson Hotels) brief’ filed at the beginning of the merits stage.

2. The respondent’s (Laufer) brief® that was filed in response to the petitioner’s brief.

3. An amicus brief’ filed by Disability Rights Education & Defense Fund etal. that
supports the respondent and against the petitioner. Disability Rights Education &
Defense Fund is an advocacy group for individuals with disabilities.

The briefs follow a strict structure [12]. Figure 1 shows the table of contents of sample
briefs and how we model the Acheson Hotels case’s briefs in an argument model. We
model each brief as an argument. The subsections under the ARGUMENT section are
premises that support the conclusion (content in the CONCLUSION section). Here, we
deem each subsection to support the section and/or the conclusion independently, and
the inference from the subsection (as a premise) to the section/conclusion is defeasible.
For example, the part of the petitioner’s brief shown in Figure 1 has Sections I, II, and
IV that support the conclusion, and Section II is further supported by Sections IL.A,
IL.B, II.C, and IL.D. Arguments, such as the one from “Pet Br. Section II.C” to “Pet
Br. Section II”, are defeasible, because other arguments can attack them.

We consider attacks between arguments if they respect the temporal filing order,
thus capturing how stakeholders argue in response to other parties. Therefore, attacks
only exist from a later-filed brief to an earlier-filed brief, and the two briefs should not
favor the same sides. The timeline for filing briefs during the merits stage is as follows
(see Rules 24, 25, and 37 in [14]): The petitioner first files a brief to argue on the merits.
Then, the respondent (the opposite party of the petitioner) files a brief to respond to the
petitioner’s argument. After that, the petitioner may reply to the respondent’s argument.
Amici curiae that support each party can also file briefs to present their arguments
during the merits stage. By keeping the order in which attacks were made, we model
the decision-making process (briefings can attack earlier but not future arguments).

Attacks are classified as undermining, rebutting, or undercutting: Undermining is
an attack on a premise, rebutting is an attack on a conclusion, while undercutting is an
attack on the inference relation between premise(s) and conclusion [10]).

Arguments in the respondent’s brief and the amicus brief in Figure 1 attack the ar-
gument in the petitioner’s brief. The respondent’s brief concludes that the First Circuit’s
judgment should be “vacated,” which is a rebuttal of the petitioner’s brief’s conclusion:
the judgment should be “reversed.”

Respondent brief’s Section I: “Havens Realty' forecloses Acheson’s challenge to
Ms. Laufer’s standing” is an undermining attack of the petitioner brief’s Section II.C:
“Havens Realty does not assist Laufer.” Because Section II.C is modeled as a premise in
the argument of the petitioner’s brief. The Havens Realty case is a key precedent in the
Acheson Hotels case. “Havens Realty forecloses Acheson’s challenge to Ms. Laufer’s
standing” directly against the petitioner’s point on Havens Realty does not assist Laufer.

In contrast, Section II in the respondent’s brief (“Havens Realty was correctly de-
cided”) is an undercutting attack of the petitioner’s Section II.C. Because it does not

7 Brief of petitioner Acheson Hotels, LLC

8 Brief of respondent Deborah Laufer

9 Brief amici curiae of Disability Rights Education & Defense Fund
10 Havens Realty Corp. v. Coleman, 455 U.S. 363 (1982).

100

https://www.supremecourt.gov/DocketPDF/22/22-429/268427/20230605160031302_22-429%20ts.pdf
https://www.supremecourt.gov/DocketPDF/22/22-429/274500/20230802150335267_No%2022-429%20Acheson%20Hotels%20v.%20Laufer%20Respondents%20Brief%20Filed.pdf
https://www.supremecourt.gov/DocketPDF/22/22-429/275477/20230816145310108_22-429%20Acheson%20v%20Laufer%20BRIEF%20w%20Accessibility.pdf

directly argue whether Havens Realty supports Laufer (respondent) or not, instead it
argues whether the Havens Realty was correctly decided.

4 Using LLMs to Generate the Argument Model

Constructing an argument model for the briefs filed in the Acheson Hotels case is time-
consuming. LLMs can help build up the model more efficiently.

To use Al for the argument model construction, we attempted to use LLMs to iden-
tify attacks between the sections from opposing briefs (e.g., respondent vs petitioner).
This allows us to generate structured argument models composed of:

— Arguments with premises as the summary of the content in each subsection un-
der the ARGUMENT section, and conclusions as the content of the CONCLUSION
section;

— Attacks between the arguments.

For attack-relation mining, Mixtral-8x7B and Mistral7B have shown strong per-
formance on relation-based argument mining (RbAM) tasks in non-legal datasets [6].
However, RbAM has not yet been applied to U.S. Supreme Court briefs. Given its
availability as an open-weight model and its prior use in [6], we chose Mistral7B to
evaluate Task 2, reusing the prompt from [6] with slight adaptation:

In this task, you will be given two arguments and your goal is to classify the
relation between them as either “attack” or “no” based on the definitions below.
Attack: It is an argument that contradicts or opposes the parent argument.

No: It is an argument that has no relation to the parent argument. Answer with
one word.

Argl: Parent Argument(parent)
Arg2: Child Argument(child)
Relation:

Our annotation includes the petitioner’s brief, the respondent’s brief, the reply brief of
the petitioner!!, and the amicus brief filed by Disability Rights Education & Defense
Fund, etal. Our annotation is based on the section headings of the briefs under the
ARGUMENT section, because these can be viewed as the summary of the whole sections.
We compared the section headings and checked whether they attack each other. The
attacks can be further characterized as undermining or rebutting, depending on whether
they are premises or conclusions. Here annotations are used to show the potential of
LLMs for identifying attack relations, not for evaluation purposes. We also have not
identified undercutting attacks between arguments in our initial experiments.

While a lack of annotated data currently makes meaningful evaluation challenging,
the initial output shows Mistral7B’s performance varied. As an example, Mistral7B

T Reply of petitioner Acheson Hotels, LLC

101

https://www.supremecourt.gov/DocketPDF/22/22-429/278676/20230901100818356_22-429%20rb.pdf

successfully identified the conflict between “Havens Realty forecloses Acheson’s chal-
lenge to Ms. Laufer’s standing” from the respondent brief and “Havens Realty does not
assist Laufer” from the petitioner brief. However, Mistral7B missed other undermin-
ing attacks from the respondent’s brief to “Havens Realty does not assist Laufer” from
the petitioner brief, such as “Havens Realty’s reasoning squarely applies to Reserva-
tion Rule testers,” where Mistral7B failed to connect Laufer with “Reservation Rule
testers.”

5 Discussion and Future Work

Based on the first author’s experience annotating the briefs in the Acheson Hotels case,
a full expert analysis of arguments in U.S. Supreme Court briefs can be very time-
consuming. The structure of the U.S. Supreme Court briefs allows us to model the briefs
as an argument model. It can be difficult for non-legal experts to determine whether
the existing headings in the briefs conflict with headings from the opposite briefs. For
example, the section heading “This [Supreme] Court’s ‘information standing’ cases do
not support Laufer” from the petitioner’s brief does not indicate what the ‘information
standing’ cases are, and thus make it hard for non-legal experts to determine whether
the Havens Realty case mentioned by the respondent is one of them.

The section headings in the briefs may also be too abstract for LLMs to correctly
identify all attack relations. In our initial attempt, Mistral7B can identify the conflict
between “Havens Realty forecloses Acheson’s challenge to Ms. Laufer’s standing” from
the respondent and “Havens Realty does not assist Laufer” from the petitioner, but failed
to connect Laufer with “Reservation Rule testers”. Therefore, more context will be
helpful for LLMs to conduct relation-based argument mining, such as a more detailed
summarization by LLMs of the subsections under the ARGUMENT section of the briefs.

How to use LLM to identify undercutting attacks between arguments still needs
further investigation. Based on similar tasks performed on a dataset of social media [16],
identifying undercutting attacks can be a challenge.

Future work is needed to properly evaluate LLMs’ performance. To this end, we will
create a legal expert-annotated corpus of argument relations in Supreme Court briefs for
the LLM-based attack identification, then use the dataset to evaluate the performance
of different LLMs for attack relation mining on Supreme Court briefs and compare
the performance of different prompts. We will experiment with different LLMs and
see if incorporating other techniques can help identify the attacks, such as factor extrac-
tion [7]. We will evaluate whether the relation mining performance depends on the level
of detail in the argument summarization. We also plan to explore methods to present in-
sights to the public based on the argument models. While our initial model was inspired
by ASPIC+ [10], subsequent work will develop a more formal, structured model of
Supreme Court briefs. This will allow us to analyze the briefs using the computational
semantics of (structured) argumentation frameworks.

102

6

Summary and Conclusions

Through a preliminary study, we have investigated how to combine the strengths of
LLMs and computational argumentation to assist non-legal experts in analyzing the
U.S. Supreme Court briefs. We have modeled the briefs as argument models: The sec-
tions in a brief can form the premises and conclusions of an argument, and attacks can
be derived between the briefs that do not favor the same party. We have explored the use
of LLMs to identify the attacks between the arguments in order to generate argument
models more efficiently. While a lack of annotated data currently makes meaningful
evaluation challenging, we find the initial results promising. Future work is needed to
evaluate LLMs’ performance on attack relation identification systematically.

References

1.

10.

Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.: From Oral Hearing to Opinion in the
U.S. Supreme Court. In: Legal Knowledge and Information Systems. pp. 1-10. IOS Press
(2013). https://doi.org/10.3233/978-1-61499-359-9-1

Ashley, K., Pinkwart, N., Lynch, C., Aleven, V.: Learning by diagramming Supreme Court
oral arguments. In: Proceedings of the 11th international conference on Artificial intelligence
and law. pp. 271-275. ICAIL °07, Association for Computing Machinery, New York, NY,
USA (Jun 2007). https://doi.org/10.1145/1276318.1276370

. Chang, R.C., Rao, A., Zhong, Q., Wojcieszak, M., Lerman, K.: #RoeOverturned: Twitter

Dataset on the Abortion Rights Controversy. Proceedings of the International AAAI Con-
ference on Web and Social Media 17, 997-1005 (Jun 2023). https://doi.org/10.1609/
icwsm.v17i1.22207

. Corley, P.C.: The Supreme Court and Opinion Content: The Influence of Parties’ Briefs.

Political Research Quarterly 61(3), 468—478 (Sep 2008). https://doi.org/10.1177/
1065912907306474

. Evans, M., Mclntosh, W., Lin, J., Cates, C.: Recounting the Courts? Applying Automated

Content Analysis to Enhance Empirical Legal Research. Journal of Empirical Legal Studies
4(4), 1007-1039 (2007). https://doi.org/10.1111/j.1740-1461.2007.00113.x

. Gorur, D., Rago, A., Toni, F.: Can Large Language Models perform Relation-based Argu-

ment Mining? In: Rambow, O., Wanner, L., Apidianaki, M., Al-Khalifa, H., Eugenio, B.D.,
Schockaert, S. (eds.) Proceedings of the 31st International Conference on Computational
Linguistics. pp. 8518-8534. Association for Computational Linguistics, Abu Dhabi, UAE
(Jan 2025), https://aclanthology.org/2025.coling-main.569/

Gray, M., Savelka, J., Oliver, W., Ashley, K.: Using LLMs to Discover Legal Factors. In:
Legal Knowledge and Information Systems. pp. 60-71. IOS Press (2024). https://doi.
org/10.3233/FAIA241234

Habernal, L., Faber, D., Recchia, N., Bretthauer, S., Gurevych, 1., Spiecker genannt D6hmann,
L., Burchard, C.: Mining Legal Arguments in Court Decisions. Artificial Intelligence and Law
32(3), 1-38 (Sep 2024). https://doi.org/10.1007/s10506-023-09361-y
Henderson, J., Bench-Capon, T.: Describing the Development of Case Law. In: Proceedings
of the Seventeenth International Conference on Artificial Intelligence and Law. pp. 32—41.
ICAIL 19, Association for Computing Machinery, New York, NY, USA (Jun 2019). https:
//doi.org/10.1145/3322640.3326697

Modgil, S., Prakken, H.: The ASPIC+ Framework for Structured Argumentation: A Tu-
torial. Argument & Computation 5(1), 31-62 (Jan 2014). https://doi.org/10.1080/
19462166.2013.869766

103

https://doi.org/10.3233/978-1-61499-359-9-1
https://doi.org/10.3233/978-1-61499-359-9-1
https://doi.org/10.1145/1276318.1276370
https://doi.org/10.1145/1276318.1276370
https://doi.org/10.1609/icwsm.v17i1.22207
https://doi.org/10.1609/icwsm.v17i1.22207
https://doi.org/10.1609/icwsm.v17i1.22207
https://doi.org/10.1609/icwsm.v17i1.22207
https://doi.org/10.1177/1065912907306474
https://doi.org/10.1177/1065912907306474
https://doi.org/10.1177/1065912907306474
https://doi.org/10.1177/1065912907306474
https://doi.org/10.1111/j.1740-1461.2007.00113.x
https://doi.org/10.1111/j.1740-1461.2007.00113.x
https://aclanthology.org/2025.coling-main.569/
https://doi.org/10.3233/FAIA241234
https://doi.org/10.3233/FAIA241234
https://doi.org/10.3233/FAIA241234
https://doi.org/10.3233/FAIA241234
https://doi.org/10.1007/s10506-023-09361-y
https://doi.org/10.1007/s10506-023-09361-y
https://doi.org/10.1145/3322640.3326697
https://doi.org/10.1145/3322640.3326697
https://doi.org/10.1145/3322640.3326697
https://doi.org/10.1145/3322640.3326697
https://doi.org/10.1080/19462166.2013.869766
https://doi.org/10.1080/19462166.2013.869766
https://doi.org/10.1080/19462166.2013.869766
https://doi.org/10.1080/19462166.2013.869766

11.

12.

13.

14.

15.

Park, S., Choi, A., Park, R.: Objection, Your Honor!: An LLM-Driven Approach for Gener-
ating Korean Criminal Case Counterarguments. Artificial Intelligence and Law (Feb 2025).
https://doi.org/10.1007/s10506-025-09432-2

Schweitzer, D.: U.S. Supreme Court Brief Writing Style-Guide Developments. Journal of
Appellate Practice and Process 19(1), 129-156 (2018), https://heinonline.org/HOL/
P?h=hein. journals/jappp19&i=137

Sullivan, B., Feldbrin, R.: The Supreme Court and the People: Communicating Decisions
to the Public. University of Pennsylvania Journal of Constitutional Law 24(1), 1-92 (2022),
https://heinonline.org/HOL/P7h=hein. journals/upjcl24&i=2

Supreme Court of the United States: Rules of the Supreme Court of the United States.
Tech. rep., Supreme Court of the United States (2023), https://www.supremecourt.
gov/filingandrules/2023RulesoftheCourt.pdf

Woo, J., Hashemi Chaleshtori, F., Marasovic, A., Marino, K.: BriefMe: A Legal NLP
Benchmark for Assisting with Legal Briefs. In: Che, W., Nabende, J., Shutova, E., Pile-
hvar, M.T. (eds.) Findings of the Association for Computational Linguistics: ACL 2025.
pp. 13139-13190. Association for Computational Linguistics, Vienna, Austria (Jul 2025).
https://doi.org/10.18653/v1/2025.findings-acl.681

. Ye, Y., Teufel, S.: Computational modelling of undercuts in real-world arguments. In: Ajjour,

Y., Bar-Haim, R., El Baff, R., Liu, Z., Skitalinskaya, G. (eds.) Proceedings of the 11th
Workshop on Argument Mining (ArgMining 2024). pp. 59-68. Association for Compu-
tational Linguistics, Bangkok, Thailand (Aug 2024). https://doi.org/10.18653/v1/
2024 .argmining-1.6

104

https://doi.org/10.1007/s10506-025-09432-2
https://doi.org/10.1007/s10506-025-09432-2
https://heinonline.org/HOL/P?h=hein.journals/jappp19&i=137
https://heinonline.org/HOL/P?h=hein.journals/jappp19&i=137
https://heinonline.org/HOL/P?h=hein.journals/upjcl24&i=2
https://www.supremecourt.gov/filingandrules/2023RulesoftheCourt.pdf
https://www.supremecourt.gov/filingandrules/2023RulesoftheCourt.pdf
https://doi.org/10.18653/v1/2025.findings-acl.681
https://doi.org/10.18653/v1/2025.findings-acl.681
https://doi.org/10.18653/v1/2024.argmining-1.6
https://doi.org/10.18653/v1/2024.argmining-1.6
https://doi.org/10.18653/v1/2024.argmining-1.6
https://doi.org/10.18653/v1/2024.argmining-1.6

Legal Texts to Legal Data: LLLM-Based Attribute
Extraction from Court Verdicts

Ivana Kvapilfkovéz[0000700037147973294], Jan Cern}f,l.,2[0009700067487378233]7 Vojtéch

POllI'l [0009—0005—4075—6579] Tomas Knapl [0009—0009—2085—-9182] Klara
b b

Bendovéz [0000—0001—8002—6566] , Jaromir Savelka3 [0000—0002—3674—5456] , and Jakub
0000—0001—-9455—9013]

Drapal'l
! Faculty of Law, Charles University, Prague, Czechia
2 Faculty of Mathematics and Physics, Charles University, Prague, Czechia
3 School of Computer Science, Carnegie Mellon University, Pittsburgh PA, USA

Abstract. Court verdicts are a valuable legal source of information about parties’
behavior, especially in criminal cases. The unstructured format of presenting the
behavior is, however, unsuitable for systematic analysis. We overcome this ob-
stacle by building a structured dataset of key attributes derived from the texts,
namely from the factual statement — description of the criminal behavior — con-
tained in most criminal verdicts across continental Europe. The attribute list is
partly defined by legal experts and partly expanded from the data itself in a LLM-
based pipeline. We investigate whether expert-provided attributes are necessary
or if data-driven discovery is sufficient. Our findings highlight both the promise
and current limitations of LLMs in legal text processing and suggest how struc-
tured representations of criminal behaviors could enable downstream applications
in legal analytics.

Keywords: Large Language Models (LLMs)- Attribute Extraction- Legal Text
Processing: Traffic-related Crimes- Court Verdicts

1 Introduction

Court criminal verdicts represent a rich source of information about criminal behavior,
which in turn can tell us much about the functioning of the justice system, especially
about the factors impacting imposition of sentences. However, descriptions of criminal
behaviors are typically available only in an unstructured form, which makes system-
atic analysis difficult. For researchers and policymakers who wish to conduct statistical
studies of crimes and punishments, a structured representation of criminal behaviors is
essential. When enriched with administrative data, such representations allow not only
for the identification of broad patterns, but also for detailed investigations of how spe-
cific attributes (e.g. criminal history, circumstance of the conduct) interact with each
other and influence judicial decisions.

A key challenge in transforming factual statements into structured datasets is pre-
serving as much original information as possible while defining a meaningful set of
attributes. Expert knowledge can guide this process by specifying theoretically relevant
factors, while data-driven methods may reveal unexpected but valuable dimensions.

105

Our work combines these perspectives and assesses whether expert-defined attributes
are indispensable or if data-driven discovery alone can suffice. Our attribute extrac-
tion process relies on large language models (LLMs), which have shown remarkable
progress in natural language processing tasks in the legal domain [5,9, 11].

The contributions of this paper are the following:

1. We construct a dataset of Slovak court verdicts concerning traffic-related offenses,
structured into key attributes, and make it publicly available.*

2. We develop an attribute-extraction pipeline that can be adapted to new crime cate-
gories and applied across different countries.

3. We compare expert-based and data-driven approaches to attribute definition, as-
sessing their respective benefits and limitations.

We view our work as an incremental step toward evidence-based legal analytics, en-
abling the analysis of sentencing practices with unprecedented depth and breadth across
all common offenses. This approach has the potential to transform the study of sentenc-
ing by providing systematic insights into how sentences are imposed. Beyond national
contexts, it also opens the door to cross-country comparisons: By aligning cases on the
basis of factual similarities, rather than relying on differing legal definitions, we can
meaningfully compare sentencing practices across jurisdictions.

2 Related Work

Prior approaches working with judicial texts have largely focused on end-to-end legal
judgment prediction (LJP), where researchers model the problem as a classification task
and use text features [2], text embeddings [4] or in-context learning capability of LLMs
[13] to predict the court’s outcome. In [1], the authors extract attributes from criminal
case proceedings of the Supreme Court of India and show that including the extracted
spans in the LLM prompt increases accuracy in the LJP task. In this work, our aim is
not the prediction of the sentencing imposed, but rather its explainability. We extract
structured attributes in the form of a flat table to be able to run a statistical regression
model and quantify the impact of individual variables.

Although we construct a dataset with a simple tabular structure, we take inspira-
tion from scholars who approach information extraction from the direction of legal
ontologies and construct knowledge graphs (KGs) [12, 6] — a semantically rich repre-
sentations of actors, events, and circumstances. D’ Amato et al. [6] follow a bottom-up
strategy, first extracting entities and relations from legal texts and then inducing an on-
tology and populating a KG from these data. In contrast, a top-down approach—where
the ontology is designed in advance—requires substantial legal expertise and is difficult
to apply uniformly in criminal law due to the heterogeneity of case facts and the level of
abstraction needed to model them ontologically. Sovrano et al. [12] combine the two ap-
proaches as they bottom-up extract KGs using a dependency parser, top-down create an
ontology and map the two together. Although the task of attribute extraction is slightly
different, we also divide our approaches into expert-based and data-driven, depending

4 https://github.com/kvapili/legal-attribute-extraction

106

Category Dev set|Test set|Precision| Recall||Final dataset
Violation of a driving ban 38 10 100%|97.4% 369
Drug-impaired driving 156 40 97.0%(99.0% 1,775
Traffic-related injury 92 23| 97.8%|96.7% 983
Other traffic-related offense 1 1 n/a n/a 103
Non-traffic-related offense 895 224 98.5%/99.5% 6,740
Unclear 18 2 n/a n/a 30
Total 1,200 300 10,000

Table 1. Overview of offenses by category with dev/test gold counts, LLM categorization perfor-
mance (precision and recall) against human annotators measured on the test set, and final dataset
distribution.

whether we start from expert instructions or we generate these instructions based on
data. We plan to add hierarchical relations to our data in future work, especially if we
encounter crime categories too complex to be captured by a flat table.

The flexibility of LLMs makes them appealing for information extraction, but con-
cerns remain about hallucinations, reliability and the need for domain adaptation. The
key aspect is a precise and knowledge-rich design of the prompts which however must
be tuned to each model specifically [8]. Gray et al. [7, 8] successfully use LLMs for
identifying factors in judicial texts. Their factors are more abstract and broad than
our attributes (e.g. nervous behavior or criminal history), but they show that a semi-
automated LLM pipeline with a human in the loop is effective and correlates with
human-identified factors. Adhikary et al. [1] model the extraction as a sequence-labeling
task and use LLMs to produce weakly supervised samples to train their sequence-
labeling model. Zin et al. [14] extract attributes from contracts in a two-step summarize-
and-extract method and demonstrate strong performance even with the now-outdates
GPT-3.5 model.

3 Data and Categorization

In this work, we focus on Slovak court verdicts, which have the advantage of being pub-
licly available. We pilot our approach on verdicts dealing with traffic-related crimes,
both because of their prevalence and because they form a relatively well-defined do-
main. While this paper concentrates on traffic cases, our long-term objective is to apply
the same methodology to other categories of crimes, gradually building toward a gen-
eral framework for large-scale legal analytics.

We work with a dataset of 11,500 court verdicts obtained from the Ministry of Jus-
tice of the Slovak Republic’. This represents approximately 10% of the full collection
available for download, which we intend to process in future work. For our purposes,
we focus solely on the sections of the verdicts that describe the facts and circumstances
of the case, as these are the basis for attribute extraction. The factual statements were
extracted using a combination of regular expressions and prompted LLMs as described
in [3].

5 https://web.archive.org/web/20230205033430/https://obcan.justice.sk/opendata

107

Attribute Description Validation Rule
substanceUsed Drug or substance detected alcohol, cannabis, methamphetamine,
amphetamine, cocaine, = mdma,
hashish, morphine, barbiturate, ben-
zodiazepine, methadon, heroin, other
amountUsed The amount of drug or substance de-|float mg/l, float g/kg
tected
measuringDevice |Measuring device used for testing -
dateOfOffense |Date when the offense occurred DD.MM.YYYY
timeOfOffense |Time when the offense occurred HH:MM
placeOfOffense |Place where the offense occurred -
typeOfRoad Type of road where the offense oc-|urban, motorway, class_I, class_II,
curred class_III, other
checkedBy Who conducted the inspection -
reasonForCheck |Reason why the inspection was carried|suspected_intoxication, traffic_check,
out speeding, traffic_violation, traf-
fic_accident, other
vehicleType Type of vehicle driven car, van, truck, bus, motorcycle, other
measuringMethod [Method used for testing breath, blood, urine
measuringTime |Time of measurement HH:SS
refusedTesting |Whether testing was refused yes, no
licenseStatus Status of driver’s license valid, banned, none

Table 2. Attribute schema with corresponding descriptions and validation rules for drug-impaired
driving.

To select the relevant cases from our dataset, we first applied an LLM-based clas-
sification pipeline, which identified traffic-related crimes and assigned them to specific
subcategories we predefined. We used the GPT-5-mini model configured in the medium-
reasoning mode with low verbosity. To support future large-scale data processing, we
opted for the mini version of OpenAI’s most capable model, which delivers high accu-
racy at substantially lower cost.

The subcategories of traffic-related crimes are presented in Table 1 along with their
distribution across the data splits. We obtained human labels for 1,500 verdict state-
ments to tune and evaluate our pipeline. Each statement was annotated by at least two
law students who agreed on 91.3% of the cases; in the remaining 131 instances, an ex-
pert label was assigned to resolve the disagreement. The LLM instructions were tuned
on a portion of the dev set, and the test set was reserved for a blind evaluation. Our LLM-
based categorization pipeline achieved precision and recall values exceeding ~97% in
the categories assessed against human annotators.

We illustrate our attribute-extraction approach on the category of Drug-impaired
driving, comprising 1,971 court cases. The extraction pipeline was developed using a
subset of 196 cases and subsequently applied to the remaining 1,775 cases. For evalua-
tion, we drew a random sample of 200 cases from the final dataset.

108

Court verdicts

schema
Attribute 1
Attribute 2 LM @ LM
Attribute 3

Attribute 4

slw o=

Dataset
Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4

5.
‘Schema update

. L J

4.
1. Emergent
Attribute attribute —

extraction extraction

Generating residual
after extraction

'—»:

Residual texts

Residual analysis

Fig. 1. Attribute extraction pipeline for the development stage.

4 Methodology

Our extraction pipeline employs an iterative sequence of LLM calls to the Gemini 2.5
Flash model by Google DeepMind, where attribute values are extracted and the at-
tribute schema is dynamically expanded with newly identified candidates. This design,
depicted in Figure 1, enables schema evolution in parallel with value extraction, ensur-
ing that both predefined and emergent attributes are systematically captured.

The first input to our pipeline is the predefined attribute schema (the first two
columns of Table 2) compiled by experts (lawyers), drawing on penal code commen-
taries, textbooks, and prior research on traffic offenses and sentencing. In addition, ex-
perts read through multiple factual statements and identified potential attributes to be
extracted.

The second input are the factual statements that are processed in batches of N sam-
ples in [iterations. Each iteration consists of the following steps:

— Attribute extraction. In the initial step, the LLM is prompted with the attribute
schema and tasked with extracting corresponding values from the input text. The
results are returned as a structured JSON object in which the relevant attributes are
populated if the information is available.

— Generating residual after extraction. The second LLM call identifies residual
information in the court verdict that is not yet covered by the attribute list. This
information is stored in a placeholder attribute called "residual” and accumulated
across batches and iterations.

— Residual analysis & Emergent attribute extraction. After processing the batch of
N samples, the accumulated residuals are provided to an LLM, which is prompted
to propose new attribute names given the context of the existing attributes. Candi-
date attributes occurring in more than r fraction of cases are retained for extraction
and the residuals are updated accordingly.

— Schema update. We add the new attribute names to the original attribute list and
the next batch of verdicts is processed with the updated attribute schema.

109

You extract values for attributes from text. Return only information from the text, never deduce
or make anything up. If the value for attribute is not provided, return ’n/a’. The date format is
DD.MM.YYYY. The time format is HH:MM. Decimal numbers are rounded to two digits after the
decimal point: #.##. Format your output as JSON. The values mut be in the original language -
Slovak. Extract the following attributes:

[attribute_schema]

What other information was there in the statement but is not covered by the attributes? Write one
sentence containing the extra information. Output a JSON with one attribute: ’residual’ where
the value is the sentence with extra information. Only output information from the original text.
The sentence mut be in the original language - Slovak.

These are the residual texts from court verdicts after extracting the following attributes
[attribute_schema]

What other pieces of information do you see repeatedly in the residual texts? Return a JSON
with the emergent attribute names as keys and descriptions as values. The attributes should be
as granular as possible, but do not repeat the attributes that were already defined.

Table 3. System prompt for attribute extraction (top), user prompt for generating residuals (mid-
dle) and system prompt for residual analysis (bottom)

When instructing the LLM to extract attributes, we explicitly emphasize the need
for literal text excerpts rather than inferring knowledge. For subsequent data analysis,
however, it is beneficial to standardize these values and cluster them into categories
where appropriate. Therefore, we run a second stage extraction with the complete set
of attributes and expert-based validation rules (2) which constrain attribute formats and
map values to predefined categories. We also instruct the model to separate values by a
semicolon in the case of multiple values per attribute (e.g. multiple substances used or
measurements of the same substance).

The prompts are detailed in Table 3. Although the prompts were further tuned for the
specific model used in our experiments, the overall extraction method remains model-
agnostic and can be applied with any sufficiently capable LLM. To support replicability,
the code is available online.®

5 Results

5.1 Discovering Attribute Names

We first applied the expert-based approach with the predefined attributes listed in the
left part of Table 4. The right part of the same table lists the attributes that emerged from
the data after the expert-defined attributes were accounted for. We tuned this selection
on batches of 20 cases (N = 20) over 8 iterations (/ = 8) with the requirement that the
emergent attributes are populated in at least 15% of the dataset (r = 0.15).

In a second experiment, we gave up our expert knowledge and started the extraction
procedure with a single predefined attribute, dateofoffense. Even under this mini-
mal guidance, the data-driven approach produced an attribute schema that was nearly

6 https://github.com/kvapili/legal-attribute-extraction

110

Expert-defined |Populated % |Validated % || Data-driven Populated % | Validated %
timeOfOffense 100.00 92.10||placeDetails 99.49 n/a
dateOfOffense 99.49 93.02||vehicleType 98.92 100.00
placeOfOffense 98.47 n/a||measuringMethod 91.84 100.00
substanceUsed 95.92 89.60||measuringTime 61.73 92.70
checkedBy 88.27 n/al|lawBroken 15.10 n/a
amountUsed 87.24 97.35||refusedTesting 8.61 100.00
typeOfRoad 82.65 100.00

measuringDevice 58.16 n/a

reasonForCheck 30.61 100.00

Table 4. Expert-defined vs. data-driven attributes with percentages of populated and validated
cases out of the evaluation set of 200 verdicts.

equivalent in scope, resulting in 18 attributes compared to the 15 identified in the earlier
approach. Without being restricted by an initial predefined schema, the LLM advanced
in a systematic manner, anticipating the underlying structure of the dataset and con-
structing a slightly more granular and coherent attribute list. For instance, it differenti-
ated three distinct attributes to capture location (offenseLocation_Municipality,
offenselLocation_Streetroad, offenselocation_DistrictRegion) and disag-
gregated the notion of substance of impairment into impairmentValue, impairment-
Unit, and impairmentMedium. The candidate attributes often comprised redundant
and overly granular proposals (e.g. driverConsumedSubstancePreDriving, alco-
holMeasurementTestPurpose) but these got discarded upon verification of the pop-
ulation rate 7.

The success of the data-driven approach is greatly attributable to the fact that we are
dealing with a very consistent category of offenses where the factual statements of the
verdicts have a similar structure in all cases of drug-impaired driving. We suspect that
the expert knowledge will be more valuable in more complex categories, e.g. traffic-
related offenses causing injuries.

5.2 Validation of Attribute Extraction

In the final run of our extraction pipeline, we worked with a full schema comprising
both expert-defined and emergent attributes. We distinguish between attributes that are
free-text strings and those that take standardized values (see Table 2).

We first applied a set of attribute-specific validation rules, defined in Table 2, to
the extracted values in order to verify the LLM’s compliance with instructions and ob-
tain a preliminary indication of where the extraction was problematic. The results are
summarized in Table 4. We see that the constraint validation was 100% successful for
all standardized attributes except for substanceUsed, where the LLM often retained
Slovak wording instead of the standardized English values (e.g. alkohol instead of al-
cohol). We manually fixed these errors before further evaluation and we believe that in
the future this issue can be mitigated by prompt refinement. For other attributes, most
cases of validation breach were due to verdict anonymization where sometimes even

111

 [GB0r0emse) () [ee)))
, Zzedfa 26. oktébra 2022 v &ase okolo 23.55 h, v meste 'Levoéa, okres Levoca, po ceste Cislo I/18,
- EEy
ulice PreSovskd, v smere jazdy k mestskému cintorinu, riadil v stave vyluéujucom spdsobilost,
[car]
osobné motorové vozidlo tovarenskej znacky Volkswagen Passai, evidenéného Cisla LE XXXBN,po

- . , _
predchddzajicom poziti alkoholickych napojov, ¢o bolo zistené vykonanim dychovej skiskyprostrednictvom
elektronického meracda AIcoQuant 6020 plué, vyrobného &isla A410195, kedy mu bolav dychu namerana

[y [Eeshl
hodnota 0,80 mg/i alkoholu,

Fig. 2. Screenshot from the Inception annotation tool with labeled sequences on a part of the
factual statement.

date/time values or vehicle types are replaced by XXX values and consequently fail our
format check.

5.3 Manual Evaluation of Attribute Extraction

We conducted a manual evaluation of the extracted attributes on 200 randomly selected
verdicts, asking law students to follow the same extraction instructions that were given
to the LLM. The annotation was done in the Inception software [10]. The annotators
were shown the factual statements of the court verdicts and they were asked to identify
spans corresponding to the values of requested attributes. For standardized attributes,
they were also asked to select a value from a predefined list. It was not compulsory
to identify all attributes. The annotation was carried out by five law students in their
3rd to Sth year of study, with each of the 200 verdicts annotated independently by two
students.

The main challenge of the manual annotation was the cognitive load imposed on
the annotators by the great number of attributes we needed them to identify and the
ambiguity of instructions for certain categories. This resulted in a low inter-annotator
agreement (IAA) often due to missed attributes and a necessity for an expert decision
to establish the ground truth.

We report both the inter-annotator agreement and the agreement between the LLM
and the ground truth for most attributes in Table 5. We measure accuracy and Cohen’s
Kappa for attributes whose values are coded as elements of a list. For span attributes
with numerals (time, date, amount used), we measure accuracy based on exact match in
numerical characters.

For several attributes, the LLM agreement is high (accuracy above 90%) and even
surpasses the IAA of human annotators, as the LLM (unlike humans) never misses a
requested attribute due to fatigue or lack of attention. Furthermore, the LLM can use its
internal knowledge to assign an appropriate category (e.g. recognizing that Fiat Ducato
is a van rather than a passenger car) which human annotators might not posses.

After analyzing the results, we conclude that lower accuracies are mostly due to
unclear instructions where nor humans neither the LLM can reliably fulfill the task.
We further observed that LLMs tend to make deductions beyond the given instructions.

112

Attribute name Annot 1 vs. Annot 2 LLM vs. Ground Truth
Accuracy Cohen’s k¥ Accuracy Cohen’s k¥
timeOfOffense 83.66 n/a 94.55 n/a
dateOfOffense 85.64 n/a 99.50 n/a
measuringTime 75.25 n/a 81.19 n/a
amountUsed 76.73 n/a 90.10 n/a
reasonForCheck 53.96 25.11 36.63 22.66
vehicleType 74.75 33.07 91.09 63.27
substanceUsed 66.34 34.54 72.28 36.06
licenseStatus 93.07 58.44 92.08 61.45
typeOfRoad 53.96 35.96 47.03 32.05
refusedTesting 98.02 84.73 98.02 85.64
measuringmethods 66.83 35.79 74.26 39.35

Table 5. Inter-annotator agreement between two annotators (left) and between an expert human
annotator and LLM (right)

For example, in the absence of a clearly stated reason for the check (85% of cases), the
LLM often inferred the value of suspected_intoxication, even though it could have
been a standard traffic_check. Similarly, for the attribute typeOfRoad, the LLM
frequently deduced that the offense occurred on an urban road, despite this not being
explicitly mentioned. While in the latter case such inference was mostly correct (and
potentially valuable for enhancing dataset completeness) in the former case it represents
arisk of hallucination that we aim to mitigate through further prompt refinement.

Overall, we find that agreement levels are high for attributes that are explicitly stated
in the text or defined with complete clarity. In contrast, attributes with ambiguous in-
structions (such as the distinction between a routine traffic violation and suspected in-
toxication as the reason for a traffic check) showed lower agreement, both among hu-
man annotators and between the LLM and the ground truth. In future iterations, we plan
to refine the annotation guidelines to enhance inter-annotator consistency and improve
overall reliability. Nevertheless, we consider these findings a solid first step toward de-
veloping a fully automated solution.

6 Conclusion and Future Work

We introduced a pipeline for extracting structured information from court verdicts by
combining expert knowledge with data-driven methods. Our contributions include (i)
the design of a multi-stage LLM-based framework for attribute extraction, (ii) the in-
tegration of expert-defined schemas and validation rules to guide and constrain extrac-
tion, (iii) an approach for discovering emergent attributes through iterative refinement
of residual information and (iv) an evaluation of LLM ability to follow instructions for
attribute extraction.

Looking ahead, we plan to extend this work in several directions. First, we aim
to scale the approach to additional categories of criminal offenses (not only traffic-
related). Second, we want to experiment with open-source LLMs deployed locally to

113

be able to use them on sensitive data. Finally, we will employ extracted attributes com-
bined with administrative datasets to examine consistency and proportionality of im-
posed sentences using regression analysis.

Acknowledgments. This study was funded by the Czech Grant Foundation (grant number 25-
16848M entitled "Just Sentences: Analyzing and Enhancing Proportionality and Consistency Us-
ing Typical Crimes"). The authors have no competing interests.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Adhikary, S., Sen, P., Roy, D., Ghosh, K.: A case study for automated attribute extraction
from legal documents using large language models. Artificial Intelligence and Law pp. 1-22
(11 2024). https://doi.org/10.1007/s10506-024-09425-7

2. Aletras, N., Tsarapatsanis, D., Preotiuc-Pietro, D., Lampos, V.: Predicting judicial de-
cisions of the european court of human rights: a natural language processing per-
spective. Peer] Computer Science 2, €93 (2016). https://doi.org/10.7717/peerj-cs.93,
https://doi.org/10.7717/peerj-cs.93

3. Bendovi, K., Knap, T., Cerny, I, Pour, V., Savelka, J., Kvapilikova, 1., Drdpal, J.: What are
the facts? automated extraction of court-established facts from criminal-court opinions. In:
Proceedings of the ASAIL 2025 Workshop at ICAIL. Northwestern Pritzker School of Law,
Chicago, IL, USA (2025), http://arxiv.org/abs/2511.05320

4. Chalkidis, I., Androutsopoulos, I., Aletras, N.: Neural legal judgment prediction in En-
glish. In: Korhonen, A., Traum, D., Marquez, L. (eds.) Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. pp. 4317—4323. Association
for Computational Linguistics, Florence, Italy (Jul 2019). https://doi.org/10.18653/v1/P19-
1424, https://aclanthology.org/P19-1424/

5. Chalkidis*, I., Garneau*, N., Goanta, C., Katz, D.M., Sggaard, A.: LeXFiles and
LegalLAMA: Facilitating English Multinational Legal Language Model Development.
In: Proceedings of the 6lst Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics, Toronto, Canada (2023),
https://arxiv.org/abs/2305.07507

6. dAmato, C., Rubini, G., Didio, F., Francioso, D., Amara, F.Z., Fanizzi, N.: Automated cre-
ation of the legal knowledge graph addressing legislation on violence against women: Re-
source, methodology and lessons learned (2025), https://arxiv.org/abs/2508.06368

7. Gray, M.A., Savelka, J., Oliver, WM., Ashley, K.D.: Can GPT alleviate the burden
of annotation? In: Sileno, G., Spanakis, J., van Dijck, G. (eds.) Legal Knowledge and
Information Systems - JURIX 2023: The Thirty-sixth Annual Conference, Maastricht,
The Netherlands, 18-20 December 2023. Frontiers in Artificial Intelligence and Appli-
cations, vol. 379, pp. 157-166. 1I0S Press (2023). https://doi.org/10.3233/FAIA230961,
https://doi.org/10.3233/FAIA230961

8. Gray, M.A., Savelka, J., Oliver, WM., Ashley, K.D.: Using llms to discover legal
factors. In: Savelka, J., Harasta, J., Novotnd, T., Misek, J. (eds.) Legal Knowledge
and Information Systems - JURIX 2024: The Thirty-seventh Annual Conference, Brno,
Czech Republic, 11-13 December 2024. Frontiers in Artificial Intelligence and Ap-
plications, vol. 395, pp. 60-71. I0S Press (2024). https://doi.org/10.3233/FAIA241234,
https://doi.org/10.3233/FAIA241234

114

10.

11.

12.

13.

. Katz, D.M., Bommarito, M.J., Gao, S., Arredondo, P.: Gpt-4 passes the bar

exam. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 382(2270) (apr 2024). https://doi.org/10.1098/rsta.2023.0254,
https://doi.org/10.1098/rsta.2023.0254

Klie, J.C., Bugert, M., Boullosa, B., Eckart de Castilho, R., Gurevych, I.: The INCEpTION
platform: Machine-assisted and knowledge-oriented interactive annotation. In: Proceedings
of the 27th International Conference on Computational Linguistics: System Demonstrations.
pp. 5-9. Santa Fe, New Mexico (2018), https://www.aclweb.org/anthology/C18-2002
Savelka, J., Ashley, K.D., Gray, M.A., Westermann, H., Xu, H.: Can gpt-4 support analysis
of textual data in tasks requiring highly specialized domain expertise? In: Proceedings of
the Sixth Workshop on Automated Semantic Analysis of Information in Legal Text (ASAIL
2023) (2023)

Sovrano, F., Palmirani, M., Vitali, F.: Legal Knowledge Extraction for Knowledge Graph
Based Question-Answering (12 2020). https://doi.org/10.3233/FAIA200858

Wu, Y., Zhou, S., Liu, Y., Lu, W., Liu, X., Zhang, Y., Sun, C., Wu, F, Kuang, K.:
Precedent-enhanced legal judgment prediction with LLM and domain-model collabora-
tion. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing. pp. 12060-12075. Association for
Computational Linguistics, Singapore (Dec 2023). https://doi.org/10.18653/v1/2023.emnlp-
main.740, https://aclanthology.org/2023.emnlp-main.740/

. Zin, M.M., Nguyen, H., Satoh, K., Sugawara, S., Nishino, F.: Information extraction from

lengthy legal contracts: Leveraging query-based summarization and GPT-3.5. In: Sileno, G.,
Spanakis, J., van Dijck, G. (eds.) Legal Knowledge and Information Systems - JURIX 2023:
The Thirty-sixth Annual Conference, Maastricht, The Netherlands, 18-20 December 2023.
Frontiers in Artificial Intelligence and Applications, vol. 379, pp. 177-186. I0S Press (2023).
https://doi.org/10.3233/FAIA230963, https://doi.org/10.3233/FAIA230963

115

Can Legislation Be Made Machine-Readable in
PROLEG?

An Investigation of GDPR Article 6

May Myo Zin![0000-0003-1315-7704] G}y Wehnert2[0000-0002-5200-0321]
Yuntao Kong!0009-0001-2089-2363] f Thanh Nguyen!-3[0000-0003-2794-7010]
Wachara Fungwacharakorn! [0000-0001-9294=3118] ' Jiaying

Xue!0009-0000-8070-6609] ' ©[ichat Araszkiewicz?*[0000—0003=2524=3976] ‘Randy
Goebel?[0000-0002-0739-2946] o Satoh[0000-0002-9309—4602]

Minh6 [0000—0002—2265—1010]

, and Nguyen Le

1 Center for Juris-Informatics, ROIS-DS, Tokyo, Japan
2 Ruhr-University Bochum, RC-Trust, Bochum, Germany
3 Research and Development Center for Large Language Models, NII, Tokyo, Japan
4 Uniwersytet Jagiellonski w Krakowie: Krakéw, Poland
5 University of Alberta: Edmonton, Alberta, Canada
6 Japan Advanced Institute of Science and Technology, Ishikawa, Japan

Abstract. The anticipated positive social impact of regulatory pro-
cesses requires both the accuracy and efficiency of their application.
Modern artificial intelligence technologies, including natural language
processing and machine-assisted reasoning, hold great promise for ad-
dressing this challenge. We present a framework to address the chal-
lenge of tools for regulatory application, based on current state-of-the-art
(SOTA) methods for natural language processing (large language models
or LLMs) and formalization of legal reasoning (the legal representation
system PROLEG). As an example, we focus on Article 6 of the Euro-
pean General Data Protection Regulation (GDPR). In our framework,
a single LLM prompt simultaneously transforms legal text into if-then
rules and a corresponding PROLEG encoding, which are then validated
and refined by legal domain experts. The final output is an executable
PROLEG program that can produce human-readable explanations for
instances of GDPR decisions. We describe processes to support the end-
to-end transformation of a segment of a regulatory document (Article 6
from GDPR), including the prompting frame to guide an LLM to “com-
pile” natural language text to if-then rules, then to further “compile” the
vetted if-then rules to PROLEG. Finally, we produce an instance that
shows the PROLEG execution. We conclude by summarizing the value
of this approach and note observed limitations with suggestions to fur-
ther develop such technologies for capturing and deploying regulatory
frameworks.

Keywords: Machine-readable legislation - GDPR - PROLEG - Legal
reasoning - Large language models - Human-in-the-loop workflow

116

1 Introduction

Modern legal and regulatory texts, such as the EU General Data Protection Reg-
ulation (GDPR), are written for human interpretation. Their open-textured lan-
guage, cross-references, and exceptions make them difficult to operationalize in
formal models, let alone in software [1]. As organizations seek to automate com-
pliance at scale, this human-centric drafting becomes a bottleneck: it impedes
consistent interpretation, slows audits, and raises the cost of demonstrating con-
formity. Converting law into a structured, machine-readable form is therefore
a prerequisite for Al-assisted legal analysis, explainable decision support, and
robust, auditable compliance automation.

55

Fig. 1. Network of explicit cross-references among GDPR, Articles.

This paper presents a human-in-the-loop workflow that transforms natural-
language provisions into executable rules suitable for automatic reasoning and
compliance checking. We focus on GDPR Article 6 (lawfulness of processing)
as a representative, high-impact provision whose nuanced conditions and excep-
tions exemplify the challenges of formalization. Our approach combines large
language models (LLMs) for scalable drafting with expert validation to ensure
legal fidelity, and targets a logic-based formalism (PROLEG) to support sound,
inspectable inference. As illustrated by Figure 1, the GDPR exhibits a dense net-
work of inter-article references. This figure visualizes only explicit connections,
yet this interconnectedness implies that analyzing Article 6 will also require
consideration of related provisions.

117

The PROLEG knowledge representation language [14] was developed to fa-
cilitate interactions between lawyers and legal reasoning systems. While it does
not address all challenges—such as limited expressiveness for certain legal con-
cepts and the ambiguity of legal texts—it does provide a minimal yet sufficient
language for reasoning, thus enabling lawyers to understand system behavior.

Our approach pairs a single, fixed composite prompt—designed to produce
both if-then rules and an initial PROLEG encoding from the article text—with
expert review that ensures doctrinal fidelity and preserves the semantic struc-
ture of the provision. By grounding LLM-generated rule candidates in expert
validation and an executable formalism, the framework supports transparent
reasoning and traceability from formal rules back to the authoritative text.

The contributions of this work are threefold:

— A practical workflow that couples LLM-based rule generation with expert
review to produce PROLEG-executable legal rules;

— A qualitative evaluation of the doctrinal fidelity of if-then and PROLEG
representations produced by a fixed composite prompt; and

— A curated rule set and test cases for GDPR, Article 6, together with a demon-
stration of end-to-end reasoning behavior, including failure modes.

We conclude by examining the limitations of the initial composite prompt
approach, including residual ambiguity and challenges associated with transfer-
ring the method to new legal domains, and by outlining how the pipeline may
generalize to other GDPR provisions and regulatory frameworks.

2 Background

Here we present background on the PROLEG logical framework and collect
related work on formal representations of legal knowledge, spanning logic- and
rule-based systems, ontology and knowledge-graph approaches, and machine-
readable standards for normative texts.

2.1 PROLEG

PROLEG (short for PROlog-based LEGal reasoning support system) [15] is a
logic programming framework developed to model and support legal reasoning.
It is based on the Prolog language but is specifically designed to represent legal
rules, exceptions, and facts in a structured and executable form.

The system was originally proposed to formalize reasoning under the Pre-
supposed Ultimate Fact Theory (JUF theory) in Japanese jurisprudence. Unlike
standard logic programming, PROLEG introduces constructs that capture the
nuances of legal argumentation, such as exceptions, burden of proof, and rule
hierarchies, which are central to legal decision-making.

In PROLEG, laws are encoded as logical rules (similar to Horn clauses), while
the facts of a case are represented separately. The reasoning process then derives
conclusions by applying the rules to the facts, taking into account exceptions

118

and conflicting interpretations. This allows PROLEG to simulate the reasoning
process of courts and legal practitioners in a transparent and explainable way.

PROLEG has been used primarily in research on computational legal rea-
soning and Al & Law, particularly for analyzing statutory interpretation and
case reasoning in civil law systems. It provides a visual reasoning trace, ensuring
that the resulting conclusions are both interpretable and reproducible, thereby
enhancing the transparency of the reasoning process. Although it is not a general-
purpose programming language, it serves as an important bridge between sym-
bolic Al and legal knowledge representation, contributing to the broader field of
legal informatics. For illustration purposes, we consider the following use case
for formalization.

A financial institution collected an extensive set of personal data from indi-
viduals on the basis of their consent. The institution processed the data, inter
alia, for the purpose of marketing. Later, one of these individuals withdrew the
consent and asked the institution to stop using the data. Despite this withdrawal,
the institution intended to continue processing the data.

This use case has been transformed into PROLEG and concerns GDPR, Ar-
ticle 6. The output result is shown in the form of a block diagram in Figure 2.
A bottom item of each block expresses the result of evaluation of conclusions
or conditions (o: success, x: fail). A solid arrow between blocks expresses the
conclusion-condition relation for a general rule, while a dotted arrow shows the
exception relation of the conclusion of a general rule. The reasoning concludes
with an overall failure mark (x), indicating that continued processing after con-
sent withdrawal is unlawful.

2.2 Logic-Based and Rule-Based Approaches

Early efforts focused on using logic-based systems to model legal rules and rea-
soning. Logic programming, particularly Prolog, has been used as a foundation
for these systems. A prominent example is the PROLEG system (PROlog-based
LEGal reasoning support system), developed to implement the Presupposed Ul-
timate Fact Theory of Japanese civil law [15]. This system demonstrates how
legal rules can be represented as Horn clauses and then processed using Prolog
technology to support legal reasoning, particularly in contexts with incomplete
information.

The field has also explored non-monotonic logics such as defeasible logic and
deontic logic to capture further nuances of legal reasoning, such as exceptions
to rules and concepts of obligation, permission, and prohibition. The pioneer-
ing work of Jones et al. [5] explored the use of deontic logic to represent legal
norms. Hybrid approaches have been proposed, such as that of Dragoni et al.
[4], which combines different Natural Language Processing (NLP) techniques,
including frame-based, dependency-based, and logic-based extraction, to extract
machine-readable rules from legal texts. This hybrid approach demonstrates the
necessity of integrating multiple methods to address the complexity of legal
language. Similarly, work on normative texts within the Norme in Rete (NIR)
project introduces machine-learning-based provision classifiers and rule-based

119

lawful ing_Art6

individual

ing_for_purpose

financial_instituion

financial_institon
personal_data

processing

marketing

X

personal_data

processing

marketing

o

valid_consent

individual

financial_institfon

personal_data

freely_given

marketing ﬂ—|_ individual

° financial_institon
personal_daa
marketing
o

specific

marketing
)

informed
individual
financial_institgion
marketing
o

individual
marketing
o

financial_institgon
individual
marketing
o

individual
marketing
o

consent_wi ‘consent_withdrawal
L financial_institdon ﬂ_ individual
individual financial_institéon
personal_daia individual
processing personal_daia
marketing processing
o marketing

)

Fig. 2. Example of PROLEG block diagram.

argument extractors that operate at the level of individual provisions, automat-
ically identifying provision types and their arguments to enrich legal documents
with structured semantic metadata [2]. In our work, we likewise focus on the
provision level, but our intention is to directly work on the provision text itself
as the primary input to the reasoning pipeline, rather than assuming a separate,
pre-annotated semantic layer.

Building upon PROLEG, Nguyen et al. [10] developed an interactive natural
language interface to make the system more accessible to legal practitioners
unfamiliar with PROLEG. The system consists of three main modules: a natural
language perceiver, a PROLEG reasoner, and an inference explainer, thereby
bridging the gap between formal logic representations and natural language input
from lawyers. Subsequently, Nguyen et al. [11] proposed a pipeline for a Deep
PROLEG system, which addressed scalability issues when synthesizing artificial
data of legal cases in new domain adaptations.

2.3 Ontology-Based and Knowledge Graph Approaches

Another important research direction involves using ontologies to formally rep-
resent legal knowledge. Ontologies provide a shareable vocabulary and structure
to describe concepts and relationships in the legal domain. Legal ontology en-
gineering methodologies, as detailed by Casellas et al. [3], provide systematic

120

approaches to building and maintaining these knowledge representations. Rele-
vant in our context is the work by Palmirani et al. [13] who introduce PrOnto, a
modular GDPR-oriented privacy ontology developed with the MeLLOn method-
ology that formally models data, actors, processing workflows, purposes, legal
bases, and deontic norms to support automated legal reasoning and compliance
checking using semantic web technologies. Leone et al. [7] systematically com-
pare and classify a set of existing legal ontologies across general, modeling, and
semantic dimensions. They highlight strengths, weaknesses, and reuse potential
in order to guide users in selecting and extending suitable ontologies for legal
knowledge representation. More recently, knowledge graphs have emerged as an
extension of ontology-based methods, which are claimed to enable more flexible
and scalable representation of legal entities and relationships. Servantez et al.
[16] further advance this line of work by introducing a graph-based representa-
tion of contract obligations (Obligation Logic Graphs) that supports automated
conversion of natural-language contracts into code; this further bridges the gap
between legal ontologies and executable contract logic. In contrast, our work fo-
cuses on natural-language legal texts rather than formal ontologies, to leverage
their linguistic richness and contextual depth to better capture meaning and
reasoning in real-world legal documents.

2.4 Machine-Readable Standards

To ensure interoperability and widespread adoption, standardization of machine-
readable formats for legal texts is important. As this standardization develops,
several approaches have emerged. For example, Akoma Ntoso (Architecture
for Knowledge-Oriented Management of African Normative Texts using Open
Standards and Ontologies) is a prominent XML standard for representing par-
liamentary, legislative, and judicial documents [12]. It provides a rich vocabulary
for marking up the structure and semantics of legal texts.

Building on this foundation, LegalRuleML has been developed as another
standard for representing legal rules in a machine-readable format. Lam et al.
[6] demonstrated how LegalRuleML can be used to enable reasoning by trans-
forming represented rules into modal defeasible logic, thereby bridging the gap
between rule representation and automated reasoning. More recently, new se-
mantic formats such as X2RL (eXplainable, eXtractable, Rule-like Language)
have been proposed by McLaughlin et al. [9] to augment regulatory documents
with rich metadata fields, and focus not only on structure but also on content and
meaning, which aims to reduce regulatory management and compliance costs.

Logic-based systems make norms executable but need manual rule crafting
and expert use; ontology and graph methods model structure but not executable
reasoning; and machine-readable standards ensure interoperability yet stop be-
fore inference. Our work bridges these by turning natural-language provisions
directly into validated, PROLEG-executable rules through an LLM-expert work-
flow. This yields traceable, auditable, and explainable reasoning while remaining
lightweight and compatible with existing ontologies and standards.

121

3 Methodology

In this section, we describe our methodology and detail the prompt design.

3.1 Overview of the Approach

Our goal is to examine how a single composite LLM prompt can support the
transformation of legal text into PROLEG-executable rules. To ensure a con-
trolled evaluation, the study uses one fixed prompt, applied once to each target
provision. The outputs of this prompt, namely a set of if—then rules and an initial
PROLEG encoding, form the basis for expert analysis.

Figure 3 presents the conceptual workflow, which consists of four stages in-
volving both automated generation and expert review. Although the figure sep-
arates these stages for clarity, in this study both the if-then rules and the initial
PROLEG encoding are produced by a single composite prompt.

GDPR Article — If-Then Rules: Convert article text into if-then rules using an LLM. ‘V-E;J
ao

Legal Expert Review: Validate and refine if-then rules; record consensus & issues. 3&‘
Feedback
for &
Prompt If-Then Rules —» PROLEG: Translate validated rules to PROLEG using an LLM. ‘ V-ﬂ
Refinement an
PROLEG Expert Review: Verify logic, adjust translations and if-then rules. ‘&;

Fig. 3. Overview of the GDPR to PROLEG conversion process.

The workflow proceeds as follows:

1. Generation of If-Then Rules and initial PROLEG Encoding: The
composite prompt instructs the LLM to interpret the selected GDPR pro-
vision, extract its conditions and exceptions, express them as structured
if-then rules, and generate a corresponding PROLEG-style representation.
These two representations serve as preliminary formalizations of the provi-
sion.

2. Legal Expert Review: Legal experts examine the if-then rules to assess
whether the extracted structure accurately reflects the provision’s normative
content. Their review focuses on the allocation of information across main
rules and sub-rules, the handling of exceptions, and the preservation of legally
significant distinctions.

3. PROLEG Expert Review: Specialists in PROLEG evaluate the LLM-
generated formalization for syntactic correctness and intended semantics.
They identify issues such as predicate mismatches, logical gaps, or distortions
introduced by the model’s interpretation of the text.

122

4. Case Creation and Execution: A case-creation team constructs repre-
sentative factual scenarios, defines the necessary fact schema, and encodes
these facts. The validated rule set and encoded facts are then executed in
a PROLEG environment, producing reasoning traces that reveal how the
formalized rules behave in concrete cases.

This design allows us to isolate and analyze the characteristic patterns of a fixed-
prompt approach, both its strengths and its limitations, while keeping LLM
generation, expert evaluation, and PROLEG execution clearly separated. We
systematically record recurring issues in the structure or wording of the rules
and in their PROLOG counterparts as part of our evaluation.

3.2 Prompt Design

The interpretation of the GDPR is inherently complex due to the interdepen-
dencies among its provisions, which frequently span multiple Articles and their
corresponding Recitals; therefore, a comprehensive and systematic interpreta-
tive approach must consider these cross-references and contextual relationships.
This study employs a custom version of ChatGPT-5 in which the Chain-of-
Instructions (COI) prompt [17] is embedded as an internal reasoning framework;
this guides the model through each stage of legal interpretation and rule formal-
ization. The prompt operates through five internal instruction stages. The first
two stages instruct the model to identify all relevant Recitals and cross-referenced
Articles that provide interpretive or procedural context for the selected GDPR
provision. This ensures that the subsequent interpretation and formalization
processes are contextually grounded and legally coherent. The third stage di-
rects the synthesis of these interpretive materials into a unified, detailed legal
rule that explicitly incorporates all dependencies and interpretive nuances. This
stage is critical for maintaining normative fidelity, as omissions or simplifica-
tions could compromise the representational validity of the machine-readable
rule. In the fourth stage, the synthesized rule is transformed into a normalized
if-then structure. This logical framing not only enforces syntactic clarity but also
aligns the rule with the representational requirements of logic-based systems. It
explicitly separates conclusions, conditions, and exceptions, thereby supporting
transparency in both human and machine reasoning. The final stage involves
generating a complete PROLOG program that includes entities, rules, excep-
tions, facts, and queries. Although our ultimate goal is to produce a PROLEG
program, we initially instruct the model to generate the logic in PROLOG, since
current LLMs are more familiar with it. This approach helps achieve higher ac-
curacy, and we can then systematically convert the resulting PROLOG program
into PROLEG. The complete prompt and the corresponding initial outputs gen-
erated for GDPR Article 6 (Lawfulness of Processing) are available in the GitHub
repository”.

" https://github.com/JurisInformaticsCenter/GDPR-PROLEG-data

123

4 Results and Analysis

The generated if-then rules were subject to qualitative evaluation performed by
legal experts. This evaluation was based on the criterion of the adequacy of
the generated rules to the structure and content of legal norms that lawyers
derive from the GDPR provisions expressed in natural language. Importantly,
our approach relied on the structural resemblance assumption, meaning that
a representation of a rule based on one Article (or a part thereof) is preferred
over complex representations derived from multiple Articles. If other parts of the
normative material are relevant, e.g., for the interpretation of the generated rule,
they should be presented in the form of accompanying sub-rules rather than as
components of the general rule. This semantic layering of the generated rules was
verified against professional doctrinal material [8]. Different types of infidelity
may arise between the if-then rule and the original normative material, including
confused or otherwise altered structure, as well as semantic modifications that
may lead either to restriction or broadening of the target rule. One research
question of the project is to investigate what types of inadequacies or other
issues occur in the generated content, assuming the fixed prompting system
defined above. We did not attempt to develop a complete classification of possible
inadequacy issues. At the outset, we adopted only a general distinction between
structural and semantic issues. We decided to develop a typology of such issues
using a bottom-up method, that is, by analysing specific outputs and clarifying
the nature of the identified issues. The resulting catalogue of issue examples is
presented in the following two subsections: structural issues (Section 4.1) and
semantic issues (Section 4.2).

4.1 Structural Issues

Questionable allocation of information to sub-rules: ChatGPT gener-
ated catalogues of sub-rules for the main rules, but in certain instances, it was
unclear why one piece of information was included in the set of sub-rules while
another, equally relevant, was not. For example, in the context of Art. 6.1(a)
(consent), ChatGPT generated sub-rules explaining that consent is freely given
(Art. 7.4) and that consent should be withdrawable (Art. 7.3), but then omitted
the requirement that consent should be distinguishable from other statements
and expressed in clear language (Art. 7.2). Similarly, it created exception-like
sub-rules indicating parental authorization of a child’s consent (Art. 8) and ex-
plicit consent for the processing of special categories of data (Art. 9.1(a)), but
not other instances of explicit consent (Art. 22(c), Art. 49.1(a)). In another re-
sult, ChatGPT generated a sub-rule related to Arts. 13 and 14 (in representing
Art. 6.1(c)), while (correctly) refraining from doing so in other cases.

Questionable allocation of information to main rules: In some instances,
ChatGPT enriched the catalogue of conditions for the main rule extracted from a
specific Article by resorting to other Articles. For example, in the output for Art.

124

6.1(a), it included the demonstrability requirement (Art. 7.1) in the body of the
rule, as opposed to the withdrawability requirement (Art. 7.3), which was placed
in the sub-rules. Similarly, in the generated main rule representing Art. 6.1(b)
(contractual necessity), ChatGPT added a condition that processing should be
compliant with the general principles outlined in Art. 5. However, this condition
applies to any instance of processing under the GDPR and should therefore be
included in the condition set of every rule concerning data processing. This was
not done consistently. Our conclusion was that such results should be avoided
for the sake of structural resemblance.

Generating presupposed clauses: In some instances concerning the recon-
struction of rules regarding data processing, ChatGPT reconstructed presup-
posed information (“data is processed”), as in the case of Art. 6.1(c), whereas in
other instances it did not. Generally, this should be avoided because, if a rule
specifies the conditions for the legality of data processing, its applicability al-
ready presupposes that data processing is occurring; thus, the information “data
is processed” is already implicit in any condition that mentions processing.

4.2 Semantic Issues

Predicate simplification: The generated sub-rule explaining the term “being
freely given” simplified the condition excluding compliance with this require-
ment. The generated rule reads: “If consent is conditional upon services not
necessary for contract performance, then it is not freely given.” However, such
conditionality is not, in fact, a sufficient reason to conclude that consent is not
freely given. In some cases, despite the presence of a conditional mechanism, con-
sent may still be freely given. This is because the existence of such a mechanism
is gradual rather than binary: the more intensively it is present in the analysed
case, the stronger, ceteris paribus, the argument that consent might not have
been freely given. Additionally, the presence of a conditional mechanism is only
one among many reasons that may lead to non-compliance with the requirement:
ChatGPT omitted the “inter alia” clause present in Art. 7.4.

Questionable paraphrases or inference results as sub-rules: In some in-
stances, instead of providing explanatory or definitional information in sub-rules,
ChatGPT attempted to paraphrase the main rule or to draw an inference from
it. This occurred in the context of Art. 6.1(b). The natural-language expression
of the rule reads: “processing is necessary for the performance of a contract to
which the data subject is party or in order to take steps at the request of the
data subject prior to entering into a contract,” whereas the generated sub-rule
stated: “If the purpose of processing is not necessary for performing or entering a
contract, then processing is not lawful under Article 6(1)(b).” Although this is,
strictly speaking, a valid inference, it omits important information: processing
of data prior to entering the contract must occur at the request of the data sub-
ject, not the controller. Consequently, if we intend to draw an inference from the

125

main rule to a negative conclusion (i.e., specify when there is non-compliance
with the Article), we should also state that even if such processing were neces-
sary prior to entering the contract, it would still be non-compliant if initiated
by the controller.

Adding information not present in the relevant source text: In sub-
rule 3 generated for Art. 6.1(c), ChatGPT stated: “If the legal obligation is
derived from non-EU/non-Member State law without an EU legal mandate.”
The phrase “without an EU legal mandate” does not appear in the source text.
Art. 6.3, which clarifies the sources of relevant legal obligations, mentions only
Union law or Member State law. Moreover, the term “mandate” is used in the
GDPR in different contexts, referring to authorizing an entity to act on behalf
of someone.

Restricting the semantic scope of expressions: While generating a rule
representing Art. 6.1(d), ChatGPT restricted the crucial expression “vital inter-
est” to “vital interest essential for the life or physical integrity.” Although the
resulting scope includes instructive examples, it omits a significant part of the
original scope; for example, private property may also be classified as a “vital
interest.”

5 Methodological Limitations

Although our goal was to explore an end-to-end transformation pipeline for con-
verting natural-language legal provisions into executable PROLEG rules, we de-
liberately limited the study to a single custom LLM configuration and to GDPR
Article 6. This constrained scope enabled us to isolate the effects of prompt de-
sign, model behavior, and expert feedback without introducing additional vari-
ability from cross-model differences or broader regulatory contexts. Accordingly,
the present analysis is best interpreted as a proof-of-concept rather than a com-
prehensive empirical evaluation. Future work will extend the methodology to
multiple LLMs, additional GDPR provisions, and larger, more heterogeneous
test sets to systematically assess robustness and generalizability.

Within this constrained setting, the methodology demonstrates the feasibility
of linking legal interpretation and logical formalization within a single prompt,
but several limitations must be acknowledged. The current approach remains
sensitive to model behavior, even when using the same prompt and identical
input text. When applied repeatedly to the same Article, the number and order-
ing of extracted Recitals and cross-referenced Articles occasionally differ slightly
across runs. Although the LLM consistently identifies the most important and di-
rectly relevant provisions, it occasionally omits provisions that are not explicitly
connected but remain contextually essential for a complete legal interpretation.
For example, when applied to Article 6(1)(a) (lawfulness of processing based on
consent), the model successfully retrieved the directly related and most relevant

126

provisions, such as Articles 4(11), 7, 8, and 9(2)(a), as well as key Recitals 32,
33, 42, and 43. However, it failed to include two important Articles, namely
Article 49(1)(a) and (f), and Article 22(1) and (2), which provide necessary con-
textual and substantive links regarding data transfers based on explicit consent
and the prohibition of automated individual decision-making, including profil-
ing. These omissions suggest that, while the model performs effectively in iden-
tifying core definitional and consent-related provisions, it struggles to capture
cross-contextual dependencies that are less syntactically but more semantically
connected, thereby highlighting a limitation in its ability to model the broader
legal relationships inherent in the GDPR framework.

Moreover, the methodology was intentionally confined to a single prompt
with an internal Chain-of-Instructions (Col) executed by a single-model con-
figuration. Although this design enabled an assessment of the model’s capacity
for integrated, end-to-end legal text formalization, future work could explore
multi-agent or modular architectures in which specialized sub-models indepen-
dently address interpretive, logical, and representational tasks. Such distributed
systems could enhance interpretability, mitigate reasoning drift, and support
feedback loops between human experts and computational agents.

6 Discussion

The results of our qualitative evaluation demonstrate both the promise and
the current limitations of using LLMs for the structured reconstruction of legal
norms. On the one hand, the models are capable of producing rule-like represen-
tations that reflect, at least superficially, the architecture of statutory provisions.
On the other hand, our analysis reveals systematic deviations from the expected
structural and semantic fidelity. These deviations arise not merely at the level of
technical inaccuracies but often concern deeper issues related to the allocation of
information, the preservation of essential normative distinctions, and the inter-
pretation of legal terminology. The structural issues show that the model lacks a
stable internal criterion for distinguishing between the general rule and its sub-
rules, leading to an inconsistent distribution of content across representational
layers. Similarly, the semantic issues indicate a tendency toward overgeneralisa-
tion, oversimplification, or unwarranted inferences, which can narrow or distort
the scope of the reconstructed norm. Taken together, these findings suggest that
while current prompting methods can elicit rules resembling expert-generated
representations, they do not guarantee their doctrinal adequacy. The observed
patterns of inadequacy underscore the need for comparing different prompting
strategies, model calibration, and perhaps hybrid systems that combine linguistic
generation with domain-specific legal constraints.

7 Conclusion and Future Work

We have examined whether GDPR Article 6 can be rendered machine-readable in
PROLEG through a human-in-the-loop workflow that combines large language

127

models with expert review. We showed how a single chain of instructions prompt
can guide the model from identifying relevant Articles and Recitals, through
drafting if-then rules, to compiling executable PROLEG code and test cases in
a demo system for compliance checks. Our qualitative evaluation indicates that
this LLM-based compilation process can recover much of the structure of legal
norms, while also revealing recurring structural and semantic issues, such as un-
stable allocation of content across main rules and sub-rules, reconstruction of
presupposed clauses, and simplifications or additions that alter the scope of key
predicates. We deliberately assumed this prompting basis as a static approach
and observed what followed from that choice, but future work will improve the
prompts, for example, by explicitly instructing the model not to paraphrase the
wording of GDPR Articles and Recitals, because such paraphrasing introduced
additional ambiguity. These findings confirm the value of PROLEG as an in-
spectable target formalism, highlighting the suitability of LLMs as generators
of rule candidates. It further demonstrates that expert validation is essential for
doctrinally reliable machine-readable legislation. Future work will refine prompt
design in light of these insights, strengthen guidance for LLM-based rule and
code generation, and extend the general approach beyond Article 6 to other
parts of the GDPR and to further bodies of legislation.

Acknowledgments. This research was supported by ROIS-DS-JOINT (023RP2025),
the “Strategic Research Projects” grant from ROIS (Research Organization of Infor-
mation and Systems), the “R&D Hub Aimed at Ensuring Transparency and Reliability
of Generative AI Models” project of the Ministry of Education, Culture, Sports, Sci-
ence and Technology, and JSPS KAKENHI Grant Numbers JP22H00543, JP25H00522,
JP25H01112, and JP25H01152.

References

1. Araszkiewicz, M., Pleszka, K. (eds.): Logic in the Theory and Practice of Lawmak-
ing. Springer (2015)

2. Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., Soria, C.: Automatic
semantics extraction in law documents. In: Proceedings of the 10th international
conference on Artificial intelligence and law. pp. 133-140 (2005)

3. Casellas, N.: Legal ontology engineering: Methodologies, modelling trends, and the
ontology of professional judicial knowledge, vol. 3. Springer Science & Business
Media (2011)

4. Dragoni, M., Villata, S., Rizzi, W., Governatori, G.: Combining nlp approaches for
rule extraction from legal documents. In: 1st Workshop on MIning and REasoning
with Legal texts (MIREL 2016) (2016)

5. Jones, A.J., Sergot, M.: Deontic logic in the representation of law: Towards a
methodology. Artificial Intelligence and Law 1(1), 45-64 (1992)

6. Lam, H.P., Hashmi, M.: Enabling reasoning with legalruleml. Theory and Practice
of Logic Programming 19(1), 1-26 (2019)

128

10.

11.

12.

13.

14.

15.

16.

17.

Leone, V., Di Caro, L., Villata, S.: Taking stock of legal ontologies: a feature-based
comparative analysis. Artificial Intelligence and Law 28(2), 207-235 (2020)
Litwinski, P. (ed.): ODO. Compliance. Praktyczny komentarz z przyktadami i
orzecznictwem. (Data Protection. Compliance. Practical commentary with exam-
ples and case law). C.H. Beck (2025)

McLaughlin, P.A., Stover, W.: Drafting x2rl: A semantic regulatory machine-
readable format. MIT Computational Law Report (2021)

Nguyen, H.T., Nishino, F., Fujita, M., Satoh, K.: An interactive natural language
interface for proleg. In: Legal Knowledge and Information Systems, pp. 294-297.
I0S Press (2022)

Nguyen, P.M., Nguyen, T.H., Zin, M., Satoh, K.: Data augmented pipeline for legal
information extraction and reasoning. In: Proceedings of the 20th International
Conference on Artificial Intelligence and Law (ICAIL 2025). p. 2. ACM, Chicago,
IL, USA (June 16-20 2025). https://doi.org/10.1145/3769126.3769200
Palmirani, M.: Legislative change management with akoma-ntoso. In: Legislative
XML for the Semantic Web: Principles, Models, Standards for Document Manage-
ment, pp. 101-130. Springer (2011)

Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: Pronto: Privacy
ontology for legal reasoning. In: International Conference on Electronic Govern-
ment and the Information Systems Perspective. pp. 139-152. Springer (2018)
Satoh, K.: PROLEG: Practical Legal Reasoning System, pp. 277-283. Springer Na-
ture Switzerland, Cham (2023), https://doi.org/10.1007/978-3-031-35254-6_
23

Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shi-
rakawa, K., Takano, C.: Proleg: an implementation of the presupposed ultimate
fact theory of japanese civil code by prolog technology. In: JSAI international
symposium on artificial intelligence. pp. 153-164. Springer (2010)

Servantez, S., Lipka, N., Siu, A., Aggarwal, M., Krishnamurthy, B., Garimella,
A., Hammond, K., Jain, R.: Computable contracts by extracting obligation logic
graphs. In: Proceedings of the Nineteenth International Conference on Artificial
Intelligence and Law. pp. 267-276 (2023)

Zin, M.M., Satoh, K., Borges, G.: Leveraging llm for identification and extraction
of normative statements. In: Legal Knowledge and Information Systems, pp. 215—
225. I0S Press (2024)

129

Using LLMs to Create Legal Ontologies for
Traffic Rule Compliance

Galileo Sartor![0000-0001-6355—-851X] ' Thija00 Raulino Dal

Pont2[000070001’7837’5505], Enrico Francescon13[0000*0001*8397*5820], and Adam
Wyner1 [0000—0002—2958 —3428]

! Swansea University, Department of Computer Science, Swansea, UK
sartor,wyner@swansea.ac.uk
2 University of Bologna, Alma-AI Centre, Bologna, Italy thiago.raulino@unibo.it
3 IGSG-CNR, Institute of Legal Informatics and Judicial Systems, National Research
Council, Italy enrico.francesconi@cnr.it

Abstract. This paper introduces a pipeline leveraging Large Language
Models (LLMs) to automate the creation and maintenance of rule-based
legal ontologies. We also explore the use of the generated legal ontologies
to perform legal reasoning in autonomous agents, focusing on traffic rules
for Autonomous Vehicles (AVs). The proposed ontology model encodes
compliant and non-compliant instances through property restrictions.
We present a prototype of the pipeline and its use, discussing the different
components and how they can be adapted.

Additionally, we discuss the possible use of the system to keep legal
ontologies up to date with changes in legislation and case law.

Keywords: Legal reasoning - Semantic Web - OWL - Norm compli-
ance - Large Language Models.

1 Introduction

Ontologies have become a foundational tool in the legal domain, enabling struc-
tured representation, management, and retrieval of complex legal knowledge.
Early work emphasized the need for explicit domain conceptualizations to sup-
port legal information systems, highlighting ontologies as a means to clarify
commonalities and differences across legal approaches and to facilitate the cre-
ation of reusable legal knowledge libraries [2].

However, the development and maintenance of legal ontologies is a complex
and resource-intensive task, often requiring significant expertise in both law and
ontology engineering. This has led to a knowledge acquisition bottleneck, limiting
the scalability and adaptability of legal ontologies.

To address this bottleneck, we use Large Language Models (LLMs).These
models can assist in creating and updating legal ontologies, thereby improving
the efficiency of ontology development. This research applies this approach to
create an ontology that enables legal reasoning and compliance evaluation in the

130

context of Autonomous Vehicles (AVs). This paper explores how LLMs can facil-
itate knowledge modelling by partially automating the definition and population
of ontology models from existing natural language sources.

2 Autonomous Driving

Currently, most AV implementations rely predominantly on machine learning
(ML) models to govern vehicle behaviour and ensure legal compliance. However,
these systems lack an explicit knowledge representation of legal rules, meaning
they do not possess a structured understanding of traffic laws, nor a way to
evaluate their compliance in accordance to the existing traffic norms. This lack
of explicit specification is a central challenge, as decision-making algorithms must
also provide legally defensible explanations for their actions. Instead, compliance
is mostly derived through data-driven approaches, where the predicted behaviour
is evaluated in a testing phase. Lawful behaviour can be induced by tweaking
the loss function, but due to the black-box nature of neural networks, there is
no guarantee that the actual behaviour is compliant with the relevant legal
norms (24} [15].

Conversely, most research in decision-making for AVs often considers only
collision free driving to be compliant, removing the complexity of the environ-
ment entirely and constructing controlled models that consider traffic laws [14].
While the use of ML models is effective and an important piece of the driving
puzzle, an approach solely based on inferred behaviour lacks explainability and
robustness in complex factual, legal, and ethical scenarios. This is potentially
even more relevant if we consider highly automated vehicles (SAE Levels 4 and
5, with minimal to no human interaction required [7]) driving in environments
where the available data for training is lacking.

Another consideration is the range of legal jurisdictions which may be in par-
allel (e.g., crossing national boundaries) or hierarchical (e.g., the Vienna Con-
vention on Road Traffic in conjunction with national and local regulations).
Here too, ontologies could help in developing a tiered knowledge base, where the
different legal (and societal) norms can be merged together.

3 Related Work

To deal with the above-mentioned issue of legal compliance a number of differ-
ent approaches are being evaluated, broadly grouped in two categories: scenario
testing, which deals with specific complex situations, and more general rule rep-
resentation. Of the two, we are more interested in the second, with the goal of
developing a comprehensive rulebase. The different proposed systems leverage
different logics or programming languages, such as Prolog [6], Linear Temporal
Logic [19], or Defeasible Deontic Logic [3].

The related work can be divided into two main areas: a) the use of ontologies
in the considered legal domains, and b) the use of LLMs to create and update

131

ontologies. This work will not go into the use of LLMs directly for legal rea-
soning, as it is out of scope for this paper. Still, it is worth mentioning that the
increase in the capability of LLMs is a critical piece in the proposed pipeline, and
understanding the usefulness and the limitations of LLMs for legal reasoning is
an important area of research.

Ontologies have a long history of application in the legal domain, serving
various purposes such as knowledge acquisition, sharing, reuse, verification and
validation, and domain theory development [2].

Subsequent research introduced core legal ontologies such as FOLaw and
LRI-Core, which model dependencies in legal reasoning and capture abstract,
commonsense concepts underlying legal knowledge. These ontologies have been
applied in various European ICT projects, demonstrating practical value in legal
information processing and reasoning tasks [22].

The evolution of legal ontologies has paralleled advances in the Semantic
Web, with a shift toward scalable, reusable, and interoperable models. Modern
legal ontologies are often built using W3C standards (e.g., OWL), and their
development is guided by principles of knowledge reuse and modularity [13].
Comparative analyses have catalogued a wide range of legal ontologies, focusing
on their features, implementation details, and suitability for reuse across different
legal frameworks.

Ontologies have also been leveraged to improve legal information retrieval,
addressing challenges such as synonymy and ambiguity in legal texts. Ontology-
based search frameworks and knowledge graphs have demonstrated superior per-
formance over traditional keyword-based methods, enabling more accurate and
semantically rich retrieval of legal documents |1]. Additionally, ontologies sup-
port advanced applications such as legal argumentation, statutory reasoning,
and the semantic annotation of legal texts, further enhancing the capabilities of
legal information systems.

Ontologies can be used to model deontic norms as classes and restrictions (9],
an approach that can handle defeasible norms and leverage the OWL reasoners
to make decisions and perform legal compliance checking.

Recent work has explored the integration of foundational ontologies (e.g.,
UFO) to foster interoperability and conceptual rigour, as well as the use of
ontology design patterns to streamline the modelling of recurring legal knowl-
edge [10]. The field continues to address challenges related to the dynamic and
heterogeneous nature of legal concepts, the need for domain expert involvement,
and the adaptation of ontologies to evolving legal systems and technologies [8].

In the Autonomous Vehicle (AV) domain, ontologies have been employed to
model traffic regulations, road environments, and vehicle behaviours, as well as to
define scenarios and situations. These ontologies facilitate the interpretation and
application of traffic rules by AV systems, supporting decision-making processes
in complex driving scenarios 17,18} 21]. For instance, ontologies have been used
to represent traffic signs, signals, and road layouts, enabling AVs to understand
and comply with legal requirements while navigating diverse road conditions |11}
12].

132

With the increasing ability of Large Language Models to manipulate text
and to assist with coding tasks, it becomes possible to use these tools to gen-
erate a structured version of a source in natural language. Recent work has ex-
plored the use of LLMSs to assist in ontology engineering tasks, such as ontology
learning, population, and alignment. For example, LLMs have been employed to
extract concepts and relationships from unstructured text, facilitating the semi-
automated construction of ontologies [5]. Additionally, LLMs have been used to
generate ontology axioms and definitions, leveraging their language understand-
ing capabilities to produce coherent and contextually relevant representations.

While the focus has often been on ontology population on the basis of an
existing schema, there is also work on the use of LLMs to create an ontology
from scratch, or to extend an existing ontology with new concepts and relation-
ships [4]. This involves prompting the LLM with relevant domain knowledge and
examples, and iteratively refining the generated ontology through human-in-the-
loop validation and correction.

4 Ontology model and norm representation

The ontology model used in this work is based on a rule-based representation of
legal norms, capturing the essential components of legal rules such as subjects,
actions, conditions, and modalities such as in [23]. The ontology is designed
to be expressive enough to represent complex legal constructs while remaining
accessible for automated reasoning and compliance checking.

Norms, expressing obligations, permissions, and prohibitions, are represented
as restrictions on the properties of legal agents (e.g., vehicles, drivers) within spe-
cific contexts (e.g., road environments). Each agent is modelled as a class in the
ontology, with properties corresponding to actions they can perform and condi-
tions under which these actions are regulated. Other entities in the environment
(e.g., traffic signs, road types) are also modelled as classes with relevant proper-
ties. Determining the compliance status then consists on the evaluation of these
properties against the defined norms.

Let us consider, as an example, Rule 171 from the UK Highway Code section
“Using the Road”.

Rule 171

You MUST stop behind the line at a junction with a ‘Stop’ sign and a
solid white line across the road. Wait for a safe gap in the traffic before
you move off.

[Laws RTA 1988 sect 36 € TSRGD schedule 9 parts 7 and 8]

In Figure [I] we show a possible representation of Rule 171 in the ontology,
where the “Vehicle” class has subclass “VehicleR1717, the subclass of vehicles
pertaining R171, namely vehicles “at a junction with a ‘Stop’ sign and a solid
white line across the road.

133

UkHC:v2

Q:UkHC:waltForSafeGap—D
UkHC:stopBeh‘mdLine>

rdfitype

UKHC:Vehicle

(UkHC:stopBehindLine value true)
and (UkHC:waitForSafeGap value true)

UkHC:VehicleR171Compliant ¢

UkHC:VehicleR171

(UkHC:stopBehindLine value false)
or (UkHC:waitForSafeGap value false)

UkHC:VehicleR171Violating ¢
A
rdfitype

@:UkHC:stopBehmdLme—D "false"Axsd:boolean

UkHC:v4

UkHC:waitForSafeGap> / "false"Axsd:boolean

Fig. 1. Ontology representation of Rule 171 from the UK Highway Code.

Two subclasses represent the violating and compliant entities directly. The
norm modelled is represented as a restriction on the properties of the “Vehi-
cleR171” class, specifying that vehicles of this class must stop at junctions with
specific characteristics (i.e., a ‘Stop’ sign and a solid white line).

The “Violating” and “Compliant” classes are two disjoint subclasses of the
situation specific class “VehicleR171”, and differ in the values assigned to the
properties of the class, stopBehindLine and waitForSafeGap. A vehicle is con-
sidered to be compliant if it both stops behind the line AND waits for a safe gap
to restart. If one of the two properties is false, the vehicle instead violates the
rule.

In the same graph, we have two individuals represented by pink dots, v2 and
v4, that belong respectively to the Compliant and Violating classes. Vehicle v2 is
compliant with rule 171 as both properties stopBehindLine and waitForSafeGap
are true. Conversely, v4 fails to stop behind the line, thus violating the rule.

The represented ontology is a description of the norm, which can be extended
with additional information, such as the vehicle type (e.g., an emergency vehicle
has different requirements and obligations) or more complex scenarios.

5 Methodology

The proposed methodology aims to create a structured legal ontology from nat-
ural language legal texts using Large Language Models (LLMs). The process
involves several steps to ensure that the generated ontology is consistent with
the source text and the desired output is suitable for automated reasoning. It is
useful to break down the task into smaller, manageable components, guiding the
LLM through a structured prompt that focuses on specific aspects of the ontol-
ogy creation process. Multiple LLMs are evaluated without changing the default
parameters (e.g., temperature, penalty) and relying solely on the prompt. This
fairly evaluates the portability of the instructions.

134

5.1 Proposed Pipeline

Feedback [failure + output |
|
[Behaviour] [Behaviour]
|E| { } owL >
é & ’[- -} 3 -G B
Translate Syntax Individual Merge with
Input .
npu LLM Text Checking Classification Database
Text ©
A T v
Generations [next one] B
Expert Whole
inthe loop Scenario

Fig. 2. Proposed pipeline for the creation of legal ontologies using LLMs.

The proposed translation pipeline is shown in Figure [2] and leverages the
strengths of LLMs while attempting to constrain them from issues such as “hal-
lucinations”. The process is iterative, with human oversight and validation to
ensure the accuracy and relevance of the generated ontology.

The input text is converted to the desired output by the LLM. The resulting
ontology of this conversion is then initially loaded to identify any parsing errors
in the “Syntax Checking” phase. Then, if any individuals (scenarios) are made
available for testing purposes, the output is also evaluated against those. If any
of these fail, we return to the LLM with an indication of the error and attempt
a new conversion. If the process is successful, the generated rule is added to the
existing ontology and can be tested again.

To guide the LLM, we use a combination of 1-shot and Chain-of-Thought
(CoT) prompting, where we break down the task into smaller, manageable steps,
providing examples and explanations of each stage. This approach helps to guide
the LLM and reduce ambiguities or inconsistencies in the model’s output.

Listing 1.1. System Prompt structure

Prompt: Transform Legal Text into OWL
Objective
Convert the provided legal text into OWL for clarity and precision.

Step by Step

1. Split the paragraph into sentences.

2. For each sentence identify the following relevant information:

Subject: Entity (vehicle, person, etc.) that performs the action.

- Conclusion: The action that is present in the main sentence.

- Deontic Modality: Optional. The importance of the action indicated in the
conclusion. Either, should or must.

135

Conditions: Things that have to be true, in order for the conclusion to be

applicable.

3. Present the JSON with the extracted elements for each sentence.

4. For each JSON object with conclusion and conditions, the OWL
representation

Predicate name is the deontic modality [...]. If not explicit infer from the
context and add a comment stating so.

Arguments are the subject, action and specifications, like a location, a time,
a characteristic.

Only create new classes or properties, if and only if, the existing ones
not fit
present the conclusion together with the corresponding added class or property

Find the subject, the verb, and the specification.
Use the verb as the predicate name.
The arguments are the subject and specifications.

5. the rules* using the identified structure.

Few Shot examples
[...1]

Final Remarks
[A summary of the instructions above]

The translation phase is itself structured, as can be seen in the System prompt
in Listing The prompt starts by extracting the input text (e.g., a norm from
a legal code) and breaking it down into smaller segments, such as sentences
or clauses. Each segment is then processed individually, with the LLM being
prompted to identify key concepts, such as subjects, actions, conditions, and
deontic modalities (e.g., must, may, should). The extracted concepts are then
mapped when possible to existing ontology templates (i.e., the example in the
prompt). Finally, the structured components are recombined using logical op-
erators (e.g., AND, OR) to reconstruct the legal rule in a formalised, machine-
readable format.

To address issues of consistency in the output of an LLM, we include a single
example from the domain in question (e.g., the UK Highway Code) to illustrate
the expected output format and structure. This example serves as a reference for
the model, helping to align its output with the desired ontology representation.
Specifically, it provides the model with a concrete reference it can replicate when
generating the new output, reducing unwanted linguistic variations and ensuring
greater consistency in the logical transformation process. The inclusion of addi-
tional information is thus used to explicitly limit the “autonomy” of the model

136

in both phases (data extraction and generation) in order to minimise ambiguity
and hallucination while enforcing strict adherence to the desired structure.

The more structured information is given to the LLM, the better the results.
This is true not only of examples (in the 1/multi shot prompting), but also
of external information. Currently in the prompt we include one example of a
modelled rule, but it might be useful to include additional information, especially
for more complex rules.

6 Running Example

6.1 Traffic Rules: The UK Highway Code

As a first example, we consider the UK Highway Code (HC), which contains the
rules and guidelines for road users in the United Kingdom. The Highway Code is
a comprehensive document that covers various aspects of road safety, including
traffic signs, road markings, and rules for different types of vehicles and road
users. The Highway Code is regularly updated to reflect changes in traffic laws
and regulations, making it a dynamic source of information for road users.

In particular, we consider the section on Using the Road: Road Junctions
(Rules 170-183), which provides guidance on how to navigate different types of
road junctions safely and legally. In our experiment we use Rule 171 (above) is
the structured example, which is then used to guide the LLM in forming output
of Rules 172 and 175, which are our running examples.

Rule 172

The approach to a junction may have a ‘Give Way’ sign or a triangle marked
on the road. You MUST give way to traffic on the main road when emerging
from a junction with broken white lines across the road.

Rule 175

You MUST stop behind the white ‘Stop’ line across your side of the road unless
the light is green. If the amber light appears you may go on only if you have
already crossed the stop line or are so close to it that to stop might cause a
collision.

Rules in the HC can describe strict legal requirements or indications for
“responsible drivers”. Rule 172 is of the first type, as can be evinced from the
explicit reference to associated legal provisions. These rules are characterised by
specific wording (e.g., must).

6.2 Automated Extraction

With the 1-shot example provided to the LLM, we define a structure for the
entire ontology. This is enforced in the multistep process, where we identify the
components of the rule, and then map them to the ontology template.

In the example, the key components in rule 171 (in Listing are passed
as a structured example in the prompt (cf. “Few Shot examples” in Listing,
and the LLM is asked to extract the same components from rule 172.

137

Listing 1.2. Extracted information from Rule 171
"subject":"ego",
"conclusion":"stop behind the line at a junction",
"deontic_modality":"must",
"conditions": [
"the junction has a ’'Stop’ sign",
"the junction has a solid white line across the road"

1

The ontology itself is encoded in the Turtle syntaxﬂ and presented as follows

as in Listing [[.3]
Listing 1.3. Representation of Rule 171
:VehicleAtJunctionWithStopAndSolidWhiteLineR171CompliantDefault rdf:type
owl:Class;
owl:equivalentClass [
owl:intersectionOf ([
rdf:type owl:Restriction;
owl:onProperty :stopBehindLine;
owl:hasValue "true"”~"xsd:boolean;
11
rdf:type owl:Restriction;
owl:onProperty :waitForSafeGap;
owl:hasValue "true"”~"xsd:boolean;
1)
rdf:type owl:Class;
I
rdfs:subClassOf :VehicleAtJunctionWithStopAndSolidWhiteLineR171Compliant.

In the ontology structure, there is a main class that represents our agents,
“Vehicle”, which is then split in subclasses for each rule (e.g., “VehicleR1717).
Each subclass contains the restrictions that define the (non)compliant instances
for that specific rule. In general terms, the modelled rules are expressed by
a main class for that rule, and two disjoint subclasses for the compliant and
noncompliant restrictions.

Listing 1.4. Output rule using Llama 4 Maverick

:VehicleEmergingFromJunctionWithBrokenWhitelLinesR172CompliantDefault rdf:type
owl:Class;
owl:equivalentClass [
owl:intersectionOf ([
rdf:type owl:Restriction;
owl:onProperty :givesWayToTrafficOnMainRoad;
owl:hasValue "true"~"xsd:boolean;
1)
rdf:type owl:Class;
1;
rdfs:subClassOf :VehicleEmergingFromJunctionWithBrokenWhiteLinesR172Compliant.

* The specification is available at https://www.w3.org/TR/turtle/

138

Listing [T4] shows the output of the LLM for Rule 172, with the new rule
classes and Datatype properties that describe the actions of the vehicle (equiva-
lent to “stopBehindLine” used in Rule 171).

In this case the differences between the LLMs are minor, and mainly show
differences in the Class or Property names (e.g., stop or stops).

If we consider Rule 175, where there is an additional entity (the traffic light)
that can assume different colors, we see that certain LLMs make an additional
distinction with Object properties, related to road infrastructure (e.g., signs,
lines, etc), that was not in the single provided example. If this is not the desired
behaviour, adding additional examples would improve the output. The output
Compliant/Violating classes are modelled in a consistent way in the different
models referring to the newly created classes and object properties instead.

Comparing LLMs, this is particularly the case with Gemini 2.5 Flash, where
the relation between Junction, Traffic Light, Traffic Light status is encoded
through Object Properties, and Classes are created to represent the different
situations, as in Listing [I.5] The output from the Llama models is more in line
with the structure presented for Rule 172, relying on properties such as “light-
IsNotGreen”, as in Listing [I.6]

Listing 1.5. Gemini output for rule 175

thasTrafficLight rdf:type owl:0bjectProperty ;
rdfs:domain :JunctionSituation ;
rdfs:range :TrafficLight .
:hasStatusValue rdf:type owl:0bjectProperty ;
rdfs:domain :TrafficLight ;
rdfs:range :TrafficLightStatus .
:AmberLightSituation rdf:type owl:Class ;
owl:equivalentClass [
owl:intersectionOf (
:JunctionSituation ;
[
rdf:type owl:Restriction ;
owl:onProperty :hasTrafficLight ;
owl:someValuesFrom [
rdf:type owl:Restriction ;
owl:onProperty :hasStatusValue ;
owl:hasValue :Amber ;

1
)
rdf:type owl:Class ;

Listing 1.6. Llama output for rule 175

:VehicleAtStopLineR175Compliant rdf:type owl:Class;
owl:equivalentClass [

139

owl:intersectionOf ([
rdf:type owl:Restriction;
owl:onProperty :mustStopBehindStoplLine;
owl:hasValue "true"~"xsd:boolean;

11
rdf:type owl:Restriction;
owl:onProperty :lightIsNotGreen;
owl:hasValue "true"”~"xsd:boolean;

1)
rdf:type owl:Class;

1;
rdfs:subClassOf :VehicleAtStopLine.

7 Evaluation Method

To validate the output of the LLM, we constructed a gold standard by manual
population of an ontology in OWL. We then took the first rule and used it in
the 1- shot prompt. The LLM output is compared with the manually created
gold standard. This comparison currently is done manually, by checking for the
presence of the same classes and properties, and their relationships. In future
work we plan to automate this process further, by using ontology matching tools
to compare the generated ontology with the gold standard. Tools are available to
highlight differences between ontologies, which can be used to assist in identifying
missing or incorrect elements in the generated ontology.

In the manual evaluation, we focus on the correctness of the generated on-
tology, checking for the presence of the same classes and properties, and their
relationships. Given the nature of the task we consider a generated ontology to
be correct if it captures the same legal norm as the gold standard, even if the
exact representation contains syntactic differences. This is important, as there
may be minor terminology variants. We hypothesize that the use of multiple
examples in the prompt may help in reducing these variations, by providing a
more comprehensive view of the desired terms, and that by expanding the on-
tology with additional background knowledge (e.g., traffic signs) we may be able
to further constrain the output.

When evaluating the LLM generated portions of the ontology, especially in
comparison with the human generated ones, it is important to highlight the
distinction between semantic errors, where the meaning of the modelled rule is
different and gives rise to different legal implications, and minor syntactic issues
that do not alter the overall meaning. The generated classes could be superfluous
or in line with the structure provided. E|

We plan to expand and formalise the evaluation strategy, focusing on two
main factors: a comparison between the output of different LLMs with the same

® In the future, this part of the validation could be partially automated through the
OOPS! validator [16]|, with the output fed back in the pipeline triggering another
run of the LLM generation.

140

prompt; the consistency of the LLM output with the human generated rule. In
particular, the LLM to LLM comparison would highlight the differences men-
tioned in Section [} that derive from the model, not the prompt.

Another tool for evaluation we intend to explore is the generation of specific
individuals that act as “scenarios”, to validate their assignment to the correct
Compliant or Violating class.

8 Conclusion and Future Work

In this paper, we presented a general pipeline for the creation of rule-based legal
ontologies with Large Language Models (LLMs). We discussed the use of these
ontologies with LLMs to perform legal reasoning and applied it in the context of
Autonomous Vehicles (AVs) to ensure compliance with traffic rules. We described
the ontology model and how compliant and non-compliant classes are modelled
through restrictions on properties.

We plan to improve the pipeline, including a more comprehensive evaluation
step-by-step. We also plan to explore the use of the generated ontologies in
legal reasoning tasks and to assess their effectiveness in supporting compliance
checking and decision-making processes in different legal domains.

Currently, the representation is limited to a subset of norms. Expanding the
representation, it will become more important to consider the interaction be-
tween different rules, considering potential conflicts of norms, and the treatment
of mitigating circumstances [20]. Such cases could be modelled in the system as
Disjoint Union subclasses of the “Compliant” Class [9].

Future research avenues include enriching the input for the LLM with an
ontology of traffic signs and their meaning, or a list of entities (e.g., vehicles,
pedestrians, road types) and their properties (i.e., the sensor abstraction).

Finally, we believe this approach is easily generalizable to other legal domains,
so further work will be done in expanding and formalizing the methodology and
toolset, ensuring the structure of the proposed pipeline is not tied to a single
domain. Changing the domain would mean tweaking the domain specific sections
of the prompt, with the data extraction and examples.

References

[1] Kevin D. Ashley. Artificial Intelligence and Legal Analytics: New Tools for
Law Practice in the Digital Age. Cambridge: Cambridge University Press,
2017. 1sBN: 9781107171503. po1: 10.1017/9781316761380.

[2] Trevor J. M. Bench-Capon and Pepijn R. S. Visser. “Ontologies in legal
information systems; the need for explicit specifications of domain concep-
tualisations”. In: Proceedings of the 6th international conference on Artifi-
cial intelligence and law. ICAIL '97. New York, NY, USA: Association for
Computing Machinery, June 30, 1997, pp. 132-141. 1SBN: 9780897919241.
DOI: [10.1145/261618.261646.

141

https://doi.org/10.1017/9781316761380
https://doi.org/10.1145/261618.261646

[10]

[11]

Hanif Bhuiyan et al. “Driving Decision Making of Autonomous Vehicle
According to Queensland Overtaking Traffic Rules”. In: The Review of
Socionetwork Strategies 17.2 (Oct. 2023), pp. 233-254. 1sSN: 1867-3236.
DOI: 10.1007/s12626-023-00147-x.

Maria Assunta Cappelli and Giovanna Di Marzo Serugendo. “Methodolog-
ical Exploration of Ontology Generation with a Dedicated Large Language
Model”. In: Electronics 14.14 (Jan. 2025), p. 2863. 1ssN: 2079-9292. DOI:
10.3390/electronics14142863.

Giovanni Ciatto et al. “Large language models as oracles for instantiating
ontologies with domain-specific knowledge”. In: Knowledge-Based Systems
310 (Feb. 15, 2025), p. 112940. 1ssN: 0950-7051. DOI: [10.1016 /. knosys.
07412941,

Joe Collenette, Louise A. Dennis, and Michael Fisher. “Advising Autonomous
Cars about the Rules of the Road”. In: FElectronic Proceedings in Theoret-
ical Computer Science 371 (Sept. 2022), pp. 62—-76. 1SSN: 2075-2180. DOI:
10.4204/EPTCS.371.5, arXiv: 2209.14035(cs].

On-Road Automated Driving (ORAD) Committee. Tazonomy and defini-
tions for terms related to driving automation systems for on-road motor
vehicles. SAE international, 2021.

Dung V. Dang et al. “Information Retrieval from Legal Documents with
Ontology and Graph Embeddings Approach”. In: Advances and Trends
in Artificial Intelligence. Theory and Applications. Ed. by Hamido Fu-
jita et al. Cham: Springer Nature Switzerland, 2023, pp. 300-312. 1SBN:
9783031368196. DOI: [10.1007/978-3-031-36819-6_ 27.

Enrico Francesconi and Guido Governatori. “Patterns for legal compliance
checking in a decidable framework of linked open data”. In: Artificial In-
telligence and Law 31.3 (Sept. 1, 2023), pp. 445-464. 1sSN: 1572-8382. DOIL:
10.1007/s10506-022-09317-8.

Giancarlo Guizzardi et al. “UFQO: Unified Foundational Ontology”. In: Ap-
plied Ontology 17.1 (Mar. 2022). Ed. by Stefano Borgo, Antony Galton,
and Oliver Kutz, pp. 167-210. 1ssN: 1570-5838. DOI: 10.3233 /a0-210256.
Lu Huang et al. “Ontology-Based Driving Scene Modeling, Situation As-
sessment and Decision Making for Autonomous Vehicles”. In: 2019 4th
Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). July 2019,
pp. 57-62. por: (10.1109/ACIRS.2019.8935984.

Michael Hiilsen, J. Marius Zoéllner, and Christian Weiss. “Traffic intersec-
tion situation description ontology for advanced driver assistance”. In: 2011
IEEE Intelligent Vehicles Symposium (IV). ISSN: 1931-0587. June 2011,
pp- 993-999. por: [10.1109/IVS.2011.5940415.

Valentina Leone, Luigi Di Caro, and Serena Villata. “Taking stock of legal
ontologies: a feature-based comparative analysis”. In: Artificial Intelligence
and Law 28.2 (June 1, 2020), pp. 207-235. 1SsN: 1572-8382. por: 10.1007/
STOAUR-0T9=09757=1,

142

https://doi.org/10.1007/s12626-023-00147-x
https://doi.org/10.3390/electronics14142863
https://doi.org/10.1016/j.knosys.2024.112940
https://doi.org/10.1016/j.knosys.2024.112940
https://doi.org/10.4204/EPTCS.371.5
https://arxiv.org/abs/2209.14035 [cs]
https://doi.org/10.1007/978-3-031-36819-6_27
https://doi.org/10.1007/s10506-022-09317-8
https://doi.org/10.3233/ao-210256
https://doi.org/10.1109/ACIRS.2019.8935984
https://doi.org/10.1109/IVS.2011.5940415
https://doi.org/10.1007/s10506-019-09252-1
https://doi.org/10.1007/s10506-019-09252-1

[14]

[15]

[18]

[19]

[20]

Xiaohan Ma et al. “Law compliance decision making for autonomous vehi-
cles on highways”. In: Accident Analysis & Prevention 204 (Sept. 1, 2024),
p. 107620. 1ssN: 0001-4575. Do1: 10.1016/j.aap.2024.107620.

Kumar Manas, Mert Keser, and Alois Knoll. Integrating Legal and Logi-
cal Specifications in Perception, Prediction, and Planning for Automated
Driving: A Survey of Methods. 2025. DoI: [10.48550/ ARXTV.2510.25386
Maria Poveda-Villalon, Asuncién Gémez-Pérez, and Mari Carmen Sudrez-
Figueroa. “OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for On-
tology Evaluation” In: International Journal on Semantic Web and Infor-
mation Systems (IJSWIS) 10.2 (2014), pp. 7-34.

Ron Provine et al. “Ontology-based methods for enhancing autonomous
vehicle path planning”. In: Robotics and Autonomous Systems. Knowledge
Engineering and Ontologies for Autonomous Systems 2004 AAAI Spring
Symposium 49.1 (Nov. 2004), pp. 123-133. 1SsN: 0921-8890. por: [10.1016/
j.robot.2004.07.020.

Ralf Regele. “Using Ontology-Based Traffic Models for More Efficient De-
cision Making of Autonomous Vehicles”. In: Fourth International Confer-
ence on Autonomic and Autonomous Systems (ICAS’08). ISSN: 2168-1872.
Mar. 2008, pp. 94-99. por: |10.1109/ICAS.2008.10.

Albert Rizaldi et al. “Formalising and Monitoring Traffic Rules for Au-
tonomous Vehicles in Isabelle/HOL”. In: Integrated Formal Methods. Ed.
by Nadia Polikarpova and Steve Schneider. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2017, pp. 50-66. ISBN:
9783319668451. DOI: |10.1007/978-3-319-66845-1_ 4.

Galileo Sartor and Adam Wyner. “A Legal Logic Programming Frame-
work for Autonomous Vehicles”. In: Joint Proceedings of the Workshops
and Doctoral Consortium of the 41st International Conference on Logic
Programming (ICLP-WS-DC 2025). Workshop on Logic Programming and
Legal Reasoning (LPLR 2025). Sept. 12, 2025.

Simon Ulbrich et al. “Graph-based context representation, environment
modeling and information aggregation for automated driving”. In: 2014
IEEE Intelligent Vehicles Symposium. ISSN: 1931-0587. June 2014, pp. 541—
547. DOI: [10.1109/IVS.2014.6856556.

Tom Van Engers et al. “Ontologies in the Legal Domain”. In: ed. by
Hsinchun Chen et al. Boston, MA: Springer US, 2008, pp. 233-261. 1SBN:
9780387716114. por: [10.1007/978-0-387-71611-4_ 13|

Adam Z. Wyner and Wim Peters. “On Rule Extraction from Regulations”.
In: Legal Knowledge and Information Systems - JURIX 2011: The Twenty-
Fourth Annual Conference, University of Vienna, Austria, 14th-16th De-
cember 2011. Ed. by Katie Atkinson. Vol. 235. Frontiers in Artificial Intel-
ligence and Applications. I0S Press, 2011, pp. 113—-122. po1: 10.3233/978-
(=R07H0-981=3-113.

Jingyuan Zhao et al. “Autonomous driving system: A comprehensive sur-
vey”. In: Fzpert Systems with Applications 242 (May 2024), p. 122836. ISSN:
0957-4174. por: [10.1016/j.eswa.2023.122836.

143

https://doi.org/10.1016/j.aap.2024.107620
https://doi.org/10.48550/ARXIV.2510.25386
https://doi.org/10.1016/j.robot.2004.07.020
https://doi.org/10.1016/j.robot.2004.07.020
https://doi.org/10.1109/ICAS.2008.10
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1109/IVS.2014.6856556
https://doi.org/10.1007/978-0-387-71611-4_13
https://doi.org/10.3233/978-1-60750-981-3-113
https://doi.org/10.3233/978-1-60750-981-3-113
https://doi.org/10.1016/j.eswa.2023.122836

Plans and Diversions

~ 1[0000-0001-6355-851X] 3y 2[0000-0002-9878 2762
Galileo Sartor! [0000-0001-6355-851X] ' Gyjdo Governatori?[0000-0002-9878-2762]

Giuseppe Pisan03 [0000—0003-0230—-8212] , Antonino RO'[0102 [0000—-0001-5265-0660] , and
Adam Wynerl [0000—-0002-2958—-3428]

! Swansea University, UK galileo.sartor,a.z.wyner@swansea.ac.uk
2 University of Bologna, Italy g.pisano,antonino.rotolo@unibo.it
3 Central Queensland University, Australia ggovernatori@csu.edu.au

Abstract. An agent in a context acts to bring about goals, formulating a path from
the agent’s current state to a goal state via intermediate states. For our purposes,
some of an agent’s actions may be legally constrained. For example, in the trans-
portation domain, autonomous vehicles (AVs) must abide by the Highway Code.
Thus, plans ought to incorporate legal reasoning. An optimal, deterministic, law
abiding plan could be found, e.g., that plan with the fewest stoplights in a predeter-
mined state (red or green). However, such a plan does not account for contingen-
cies, i.e., non-deterministic states, where the stoplight’s value is only determined
in the state at a time. In the state, the agent may be faced with a choice between
violating the law or finding and choosing an alternative plan which would not in-
duce a violation - a diversion. Defeasible Deontic Logic (DDL) has been used for
legal reasoning, and planning has been implemented in Answer Set Programming
(ASP); an ASP encoding of DDL has been proposed and used for planning with
respect to optimal plans. The novel contribution of this paper is to introduce diver-
sions of plans for AVs which address contingencies with respect to legal reasoning.

Keywords: defeasible deontic logic - answer set programming - planning - autonomous
vehicles

1 Introduction

Planning is critical in many domains in order to attain goals, e.g., project, business,
or operations management. We can make plans prior to execution of the plan - static
plans. However, things may not go according to plan in the course of executing it, as
unaccounted for contingencies may arise. To address them, mitigating strategies may be
deployed, whether arranged in advance or on the fly. Such strategies may introduce a
plan, which is a variant on the original one; in effect, we have dynamic plans. We refer
to such variant plans as diversions, which accommodate contingencies.

In the legal setting, static and dynamic planning are also critical, e.g., in litigation
strategy, contracts, financial transactions, and others. What is critical in legal planning
is that the action executed in a given state also abides by legal norms - what is obli-
gated, prohibited, or permitted. The norms specify which actions violate the norms and
(depending on mitigations) lead to sanctions and reparations.

144

Given an environment, an agent’s plan and behaviour may vary depending on its
attitude. For instance, one agent type may not tolerate violation of any legal norm while
tolerating longest (or slowest) plans - agens legalis. Another agent type may want the
shortest (or fastest) plan while tolerating violations - agens economicus. Other agents
may have different trade-offs between violations, time, other costs. As it is complex to
define the attitude itself, we only consider the preference for one type of plan or another.

As a use case in the analysis, formalisation, and implementation of legal plans with
diversions, we consider autonomous vehicles (AVs) in an environment which can repre-
sent core features. Autonomous vehicles are particularly attractive as we can explicitly
represent: plans as a series of states from a start state to a goal state; actions from state
to state; agents that execute actions; legal norms; and contingencies such as whether a
light in a state is red or green.

Planning has been a long-standing topic in Artificial Intelligence with wide applica-
tion. There is recent research on using LLMs in planning [28]. Yet, for the legal domain,
precision, logical correctness, controllability, and explainability are paramount virtues
that are not available in LLMs but are in logic-based approaches. Research in Artifi-
cial Intelligence and Law on legal planning has been limited to date. [19] mentions legal
planning and that prior work, e.g., [26], which concerned constraint satisfaction of build-
ing plans (static plans). Beyond that, relevant literature is hard to come by (see Section
5 for additional discussion).

Taking a logic-based approach, we have well-developed and powerful tools of An-
swer Set Programming (ASP) [27], which generate plans, and Defeasible Deontic Logic
(DDL), which represents and reasons with legal knowledge. DDL has been encoded in
ASP [6], and integrated with ASP planners, DDL-ASP planner, as outlined below.

This paper contributes to the DDL-ASP planner by enabling it to reason with con-
tingencies in order to dynamically propose diversions to a pre-existing global plan. 4.
The system is a step towards richer, more complex legal planning systems. The frame
of the research is scoped to focus on fundamental aspects: one type of legal signal - the
stoplight; one prohibition (on crossing a red light); a choice of balance between agens
legalis and agens economicus; no reasoning behind the type of agent; limited cost/ben-
efit analysis; a small environment; and no mitigations. While scoped, the system is the
basis for future work.

The paper first provides background on DDL-ASP (Section 2) and planning with
DDL (Section 3). In Section 4, autonomous vehicles with DDL-ASP and planning is
presented, giving code snippets and worked examples. Related work is outlined in 5.
Section 6 concludes and outlines future work.

2 Defeasible Deontic Logic

Defeasible Deontic Logic (DDL) is an efficient rule-based non-monotonic formalism
for legal reasoning. It combines features of Defeasible Logic for the natural and efficient
modelling of exceptions with deontic logic, including deontic operators (obligation and
permission), and the ability to reason with violations and compensatory obligations.

4“The ASP and Python scripts are available at https://github.com/Gilbocc/
asp-av-planning.

145

The language of DDL is built from a set of atomic propositions ({p1, p2, ... }). The
logic distinguishes between plain literals (which are either atomic propositions or the
negation of atomic propositions) and deontic literals. A deontic literal is a plain literal
that falls within the scope of either a deontic operator or a negated deontic operator. The
deontic operators are O for obligation and P for permission.

A theory in DDL is a triple

(F,R,>)

where F is a set of facts (a set of literals), R is a set of rules, and > is a binary relation
called superiority relation over the set of rules. The rules are partitioned in constitutive
rules, prescriptive rules and permissive rules. A rule is an expression

r:at,...,a, =xC

where r is the label or name of the rule, and it is unique for each rule; a1, ..., a, are the
premises or the antecedent of the rule (the set of the premises of a rule can be empty);
each a; is either a literal or a deontic literal; X is the mode of the rule. The idea behind
DDL is that the conclusion of a rule is the effect of the rule, and the type of the effect
depends on the mode of the rule, which is that the mode specifies the type of conclusion
produced by the rule. In addition, rules are defeasible in the sense that we can assert
the conclusion of a rule unless there are other rules against it. For a constitutive rule
X = C, the conclusion is a factual statement, a statement that can be evaluated as true
or false in the given scenario. For a permissive rule X = P, the rule establishes that the
conclusion is permitted. Finally, for prescriptive rules X = O, when a rule is applicable
and not defeated, the conclusion is an obligation in force in the given state. In addition,
the conclusion of a prescriptive rule can be an expression b1 ®b,Q- - -®b,,,. The meaning
of such expressions is, if the rule is applicable and there are no rules against it (the various
elements of the sequence), that b is obligatory (i.e., Ob; holds), and if it is violated,
meaning that ~b| holds as well, then b, is obligatory, and doing it compensates for the
violation of b;. Moreover, it is recursive. Thus, if Ob, holds and if it is violated, Ob;
holds, and complying with it compensates for the violation of b;, and so on. Thus, b, is
the last chance to comply with the norm/rule producing the sequence b1 b, ® - - - ® byy,.

The superiority relation allows us to establish which rule overrides another rule,
when the two rules are both applicable and for conflicting conclusions.

In this paper we adopt the implementation of DDL in ASP presented in [6] ASP
and DDL are two approaches to rule-based non-monotonic reasoning. However, they
have different semantics, thus, it is not possible to represent DDL in ASP since they
have different interpretations of negation. Moreover, [7] proves that Stable Semantics,
the underlying semantics of ASP, is not suitable to model certain aspects of legal rea-
soning. This means that we cannot model directly norms in ASP, but we can use a meta-
programming approach to capture DDL in ASP based on the framework proposed in [3]
and extended to the case of Defeasible Logic with modal operator [9]. Accordingly, we
define constructs to treat atoms, negation, and defeasible rules in ASP. In addition, we
have to define the ASP clause to capture the DDL reasoning mechanism.

Here we recall how to encode a theory in DDL in ASP following the implementation
of DDL in ASP proposed in [6]. The first step is to declare the language, which means

146

that for each atomic proposition p, we have to include the clause
atom(p).
A rule

r:ly,...,ln,0o01,...00,,-0noy,...=0no, Ppi,...Ppy,=Pnpy,...=Pnp, =>x c

is encoded as

<mode>Rule(r,c).
applicable(r,c) :-
defeasible(1_1), ... , defeasible(1l_m),
obligation (o_1), , obligation (o _n),
not obligation(no_1), ... , not obligation(no_k),
permission(p_1), , permission(p_w),
not permission(np 1), ... , not permission(np_z).
where <mode> is a placeholder that stands for constitutive, prescriptive or permis-
sive according to the value of X.
When the conclusion of a prescriptive rule is an expression c1 ® c2 ® * - ® ¢, ® ¢y
The rule is rendered as

prescriptiveRule(r,c_1).

e lie 2,1).

compensate(r,c_1,c_2,1
,c_2,c_3,2).

compensate (

r —
r
compensate(r,c_m,c_n,n-1).

The ASP implementation of the DDL reasoning defines clauses for defeasible/1,
obligation/1, permission/1. The clauses capture in ASP the proof conditions for +dc,
+do and dp.

Notice that the implementation allows for literals built from predicates. However,
ASP requires specifying the domain of quantification to ensure safe grounding; for such
a case, we extend the clauses with a predicate that allows us to specify the domain. Thus
we can have clauses like (see the next section for concrete examples):

atom(p(X,Y)) :- domainX(X), domainY(Y).

3 Planning with DDL

A planning problem in ASP is defined as a tuple:
P =(S,A,T,s0,G)

where:

S is the set of possible world states, represented as collections of fluents.
A is the set of actions, each with preconditions and postconditions.

— T € § x A x S is the transition relation defined by the effects of actions.
so € § is the initial state.

— G C Sis the set of goal states.

147

In ASP, this is encoded over a bounded time horizon ¢ = 0... H as following. The
initial state is encoded by specifying which fluents hold at time ¢ = 0. This is done by
asserting that the fluents in sg hold at time O:

state(0, f) < for each fluent f € s

The executability of an action at time 7 is determined by the state of the world at
that time. An action a is executable at time ¢ if all its preconditions hold in the state at
time 7. This is captured by the following rule:

trace(a,t) « state(t, f), ..., state(t, f,)

where trace(a, t) indicates that action a is executed at time ¢.

The effects of an action on the state are encoded by the postconditions of the action.
If an action a is executed at time ¢, it updates the state at time # + 1. Some fluents are
added (i.e., the action causes a fluent to hold), while others are deleted (i.e., the action
causes a fluent to no longer hold). This is represented as:

state(r + 1, f) « trace(t, a), causes(a, f)
-state(t + 1, f") « trace(t, a), deletes(a, f”)

Frame axiom encode world inertia, meaning that fluents that are not affected by an
action remain unchanged. If a fluent f holds at time #, and no action deletes it, it will
also hold at time ¢ + 1:

state(r + 1, f) « state(t, f), not -state(z + 1, f)

The goal condition specifies fluents that must hold at the end of the planning process at
time t <= H:

« not (state(z, f1),. .., state(t, fr))

The action choice rule specifies that, at each time step, at most one action must be
chosen to be executed:

{trace(t,a) : a € A}l « time(r)

Every stable model produced by the ASP reasoner corresponds to a valid plan. This
set of plans can be refined using an optimization strategy. In our methodology, legal
norms are encoded in ASP via Defeasible Deontic Logic, so the resulting normative
concepts, such as obligations, violations, and permissions, are also included in the sta-
ble model. As a result, planning can be easily constrained to reflect desired behaviours
by constraining the propositions present in the model. For example, we may choose to
discard all plans that contain violations, thereby enforcing strict normative compliance.

4 Autonomous Vehicles

The complexity of autonomous driving motivates a hierarchical planning architecture
across global, strategic route selection and local, context-aware decision making. A
global planner cannot account for contingencies, e.g., status of traffic lights, other road

148

users, etc.; a local planner has no strategic reasoning. Note that we do not consider a
sanitized environment, where the vehicles know ahead of time what they will encounter.

The global and local planner share the basic world model. The distinction between
the planners lies in their different access to the states.

— The long-term planner operates under uncertainty, as the agent is not aware about
the contingencies. It reasons over a static world model, aware of the existence of
dynamic elements (like traffic lights), but ignorant of their state at a specific fu-
ture time. The long-term planner identifies the optimal path minimising the total
distance and an additional weight added by the existence of traffic lights, which are
interpreted as a potential delay in time. Given this, the planner can only approximate
the time to complete a path.

— The short-term planner has access to the perceived state of the world (e.g., traffic
light state). Its knowledge is more complete, but is localized to a short window.
Crucially, the short-term planner finds the local plan optimised by norm compliance,
which means that the plan minimises the number of norm violations which would
arise were the actions of the plan to be executed.

For this paper, minimisation is a constraint on the short-term planner. An optimal short
term plan may still contain a violation, leaving the vehicle to decide if such a plan is
acceptable. In the example, the vehicle avoids violations and recalculates a long-term
plan. In future work, we will explore issues related to mitigating circumstances.

Y

A
Y
uQ

ol < :

Fig. 1. Graph of the World model

The program divides labour between legal plans and the actions performed by the
agent. In particular, the ASP code encodes the traffic rules and plans, while the Python
program manages the dynamics changing in the world. It uses the clingo Python library,
calling the Clingo ASP solver to generate the plans when needed. The global planner
generates a proposed plan that is used as input for the local planner in a shorter window.

1. If the local plan would be compliant, i.e., no violations occur were the agent to
execute actions from the current state, then the actions of the local plan are executed,
the window is shifted, and the local planner is called on the next actions.

2. If the plan is deemed not acceptable on the basis of the local planner’s preference,
the global planner is invoked to find alternatives.

149

% Preconditions

action (T, move(Y)) :- fact(state(T, position(X))), next(T, X, Y)
, time(T+1).

action (T, invert (X)) :- fact(state(T, position(X))), time(T+1).

% Postconditions

fact (state (T+1, position(X))) :- trace(T, move(X)).

fact (state (TH+1, direction(ND))) :- trace(T, invert (X)), fact(
state (T, direction(D))), invert(D, ND).

-fact (state (T+1, position(D))) :- trace(T, move(_)), fact(state(
T, position(D))).
-fact (state (T+1, direction(D))) :- trace(T, invert(_)), fact(

state (T, direction(D))).

% Inertia
fact (state (TH+1, X)) :- fact(state(T, X)), time(T+1), not -fact(
state (TH1, X)).

Listing 1.1. Vehicle actions

The environment is modelled as a directed graph consisting of states, some of which
contain traffic lights (Figure 1). The agent can move forward or backwards between ad-
jacent nodes (Listing 1.1). The available actions are modelled in terms of preconditions
and postconditions. If necessary the vehicle can also skip an action, stopping in the cur-
rent node. Where the action is taken, the agent’s new position and direction are updated.
In the world description, traffic lights are modelled as either static or dynamic. A per-
manent red light is present at location b, while the light at location d alternates between
green and red (indicated as half green to red), depending on the simulation time. The
connection between locations and current direction of the agent determines which tran-
sitions are possible at any given step. The graph is sufficient to show the core aspects of
the system. Future work will include more complex environments and simulations.

% Maximum 1 action X per time T
0 { trace(T, X) : action(T, X) } 1 :- time(T).

% Must reach position g
goal :- fact(state(_, position(g))).
;- not goal.

% Weight assigned to a traffic light
weight (X, 2) :- fact(traffic_light(_, X)).

#minimize { T@l, T, S : trace(T, S) }.
#minimize { WQ1l, T, S, W : trace(T, move(S)), weight(S, W) }.

Listing 1.2. Global Planner

The global planner (Listing 1.2) reads the world state and generates a plan which
minimises the time needed to reach the final goal g and the potential delay added by the

150

obstacles (e.g., traffic lights). For this, it uses the graph representing the world and the
weight that on obstacles (Listing 1.2).

% Rule r1/r2: Obligation to stop at traffic lights if red and
not emergency

prescriptiveRule(rl, stop(T, X)) :- tf(T, X).

applicable(rl, stop(T, X)) :- defeasible(traffic_light (ID, X)),
defeasible (state (T, traffic_light (ID, red))), defeasible(
state (T, direction (forward))).

compensate(rl, stop(T, X), pay_ fine, 1) :- tf(T, X).

constitutiveRule (r2, non(stop (T, X))) :- tf(T, X).

applicable (r2, non(stop(T, X))) :- obligation (stop(T, X)),
defeasible (state (T, position(X))), defeasible(trace(T, move(
).

convertPermission (r2, non(stop(T, X))) :- defeasible(traffic__
light (ID, X)), defeasible(state (T, traffic_light(ID, red))),
defeasible (emergency) .

fact (trace (T, move(X))) :- trace(T, move(X)).

atom (pay_fine).
atom (stop (T, X)) :- tf(T, X).

tf(T, X) :- fact(traffic_light(ID, X)), fact(state(T, traffic_
light (ID, red))).

% Planning Problem
0 { trace(T, X) : action(T, X) } 1 :- time(T).

#minimize { 10@2 : obligation (pay fine) }.
#minimize { TQ1, T, S : trace(T, S) }.

Listing 1.3. Local Planner

The short term planner has access to the traffic regulation as modelled in Listing 1.3.
The agent operates under a set of norms that regulate its behaviour. A prescriptive rule
(r1) obligates the agent to stop at red traffic lights, with a monetary fine serving as com-
pensation in cases of non-compliance. A constitutive rule (r2) identifies the conditions
under which we have a failure to stop, namely, when the agent is obligated to stop yet
acts. Exceptions are modelled using a permissive rule (r2) that allows the agent to disre-
gard red lights during emergency situations. The short-term planner evaluates the states
and actions prospectively and hypothetically with respect to the norms; that is, where the
execution of an action in a state were to lead to a violation, we say that the plan contains
a violation. In such a case, a new long term plan will be calculated.

The short term planner considers dynamics, represented in context dependent infor-
mation at runtime by the Python script. This information is included in the ASP theory
before the grounding phase. This includes: the updated position, the current direction,
the window size, the goal, and any mitigating circumstances such as being in an emer-

gency

151

We use the ASP optimization mechanisms so the local planner can optimize in dif-
ferent ways, depending on the explicit optimization criteria: minimising the number of
violations; minimising the time to reach the goal; or some combination. In the Python
code, the optimization is set when calling the local planner. While in the current state
the reasoning with violations and optimisation is limited, in future developments it will
be made more context dependent.

We consider two potential scenarios in relation to Figure 1, varying the number of
time steps the local planner can see ahead and the total time the vehicle allows for the
short plan. In both cases the vehicle starts at node a, point forward, and aims to reach
node g. The vehicle is not in an emergency, so it must comply with the traffic rules.

In Listing 1.4, we set the visible window to 2 time steps, and the total time (for the
short planner) to 4. The global planner proposes passing through nodes b and g. The local
planner then checks the possible routes and finds that there is no way to avoid a violation.
This is because of the traffic light in b, fixed on red. The global planner is invoked again,
avoiding the previous intersection that caused the violation, and proposes a new plan:
¢, d, e, g. The local planner analyses the first leg (the first two moves, according to the
window size), and accepts the move ¢, d, as there are no violations, and repeats the
evaluation for the next leg, accepting e, g, reaching its destination. The vehicle does not
perform any action at time 2, as the optimal plan includes waiting at the red light.

trace (0,move(c)) trace (0,move(b))
trace (1,move(d)) trace(1l,invert (b))
trace (3,move(e)) trace (2,move(a))
trace (4,move(g)) trace(3,invert (a))
trace (4,move(c))
trace (5,move(d))
. trace (7,move(e))
Listing 1.4. Path example 1 trace (7,move(g))
Listing 1.5. Path example 2

In Listing 1.5, we obtain a different routing where the window is set to 1, and the
time to 6. In this case the local planner is only looking at one action at a time. The first
proposed global plan is b, g, but now only the first action b is evaluated by the local
planner, and no violation is detected. The action is executed, and the vehicle moves
to b. The local planner is called again, and now the only action in the window is g.
Here the traffic light violation is detected, and the global planner is invoked this time
with a different starting point, b. The new plan is invert(b), a, invert(a), c, d, e, g. The
local planner evaluates the first move action, to a, which is accepted and executed. The
vehicle moves to a, and the local planner is called again. This continues, with no further
violations, and the vehicle reaches its destination.

152

The analysis illustrates the benefits, in terms of simplicity and consistency, of a
shared DDL-ASP logical representation which integrates the environment, actions, plan-
ning, and with reasoning about norms.

5 Related Work

We outline the few recent contributions on normative planning.

5.1 DDL

[22] addresses planning in normative environments using the PDDL planning frame-
work; and [21] formalise it in Linear Temporal Logic. However, the expressiveness of
both approaches is limited, as the planner will never produce a plan in which a norm in-
stantiation is violated and remains uncompensated for. Additionally, they do not include
constitutive rules in their formalisation.

Answer Set Programming (ASP) has been established as a powerful formalism for
declarative problem-solving. ASP-based planning systems have benefited from contin-
uous performance improvements of ASP solvers as well as support for heuristics and
constraint-solving techniques to further enhance efficiency [27].

However, there are still few contributions in the area of normative planning. For in-
stance, [11] introduces an ASP-based framework that encodes legal norms using weak
constraints, enabling the resolution of well-known deontic paradoxes. Their framework
does not account for compensatory obligations. Real-time norm-aware planning is pre-
sented in [1], where ASP is used in run-time to generate emergency plans to repair
policies that violate norms. While the planner minimises the number of violations, the
formalism does not have constitutive and compensatory rules as in DDL.

DDL has already been used for planning in [5, 14, 20]. [5] represents the mental
attitudes of agents; it selects from amongst pre-computed plans. Similarly, [14] has an
agent with attitudes and plans routes to avoid collisions. In [20], a normative supervisor
(implemented in SPINdle [13]) uses reinforcement learning to remove actions that do
not comply with the norms encoded.

Notably, these developments do not represent diversions with respect to norms.

5.2 AVs

We briefly survey relevant AV literature. As mentioned in [23, 15], traffic rules may be
more context dependent recommendations rather than absolute constraints. For situa-
tional reasoning, AVs may require background knowledge or commonsense reasoning,
as suggested in [12]. [24] considers drivers violating rules without consequential penal-
ties. Drivers alter their behaviour in view of the entire socio-technical system.

Planning for AVs is generally limited to trajectory prediction, with systems integrat-
ing formal methods with Reinforcement Learning or LLMs [18]. AV evaluation of rule
compliance and violations appears in [16]. A reinforcement learning appoach is taken,
which triggers, re-planning when encountering potential violations. The encoding is
based on norms as constraints on trajectories.

153

There are various representations of traffic rules. [4] models rules and actions in
a Belief-Desire-Intention framework in Prolog. The BDI model is often used to trace
the behaviour of the AV, as in [2]. [17] focusses on rules for trajectory monitoring. The
encoding can be more or less isomorphic with regard to the source text, sometimes using
controlled natural languages as in [25]. The goal is to model all traffic laws, e.g., the UK
Highway Code. However, such research does not use expressive normative reasoners.

6 Conclusions

This work present a unified framework for integrating planning and normative rea-
soning using Answer Set Programming and Deontic Defeasible Logic to model obli-
gations, permissions, and violations alongside the agent’s operational capabilities. By
embedding normative constraints into the planning model, the system reasons about
goal achievement and compliance in a coherent, integrated, and transparent way. The
approach flexibly compares different agent behaviours, supporting legal and context-
sensitive decision-making without requiring separate modules for normative evaluation
of plans.

In future work, the patterns of violation, penalty, and reparation will be incorporated
as well as reasoning with respect to mitigations. Agents will consider their folerance
towards risk in making plans. The defeasible reasoning will incorporate the richer logics
of [8, 10], which accounts for different agentive modalities, levels of goal achievement,
and attitudes towards norm compliance. We intend to develop quantitative analysis of
performance, with the aim of assessing the computational overhead introduced by the
DDL component. This will evaluate the trade-offs between normative expressiveness
and planning efficiency in larger or more dynamic environments.

References

[1] Sebastian Adam and Thomas Eiter. ‘‘ASP-Driven Emergency Planning for Norm
Violations in Reinforcement Learning’’. In: AAAI-25, Sponsored by the Associa-
tion for the Advancement of Artificial Intelligence, February 25 - March 4, 2025,
Philadelphia, PA, USA. Ed. by Toby Walsh, Julie Shah, and Zico Kolter. AAAI
Press, 2025, pp. 14772-14780. por: 10.1609/AAAI.V39114.33619.

[2] Gleifer Vaz Alves, Louise Dennis, and Michael Fisher. ‘A Double-Level Model
Checking Approach for an Agent-Based Autonomous Vehicle and Road Junction
Regulations’’. In: Journal of Sensor and Actuator Networks 10.3 (Sept. 2021),
p- 41. 1ssn: 2224-2708.

[31 Grigoris Antoniou et al. ‘‘Embedding Defeasible Logic into Logic Programming’’.
In: Theory and Practice of Logic Programming 6.6 (2006), pp. 703-735. por:
10.1017/51471068406002778.

[4] Joe Collenette, Louise A. Dennis, and Michael Fisher. ‘‘Advising Autonomous
Cars about the Rules of the Road’’. In: Electronic Proceedings in Theoretical
Computer Science 371 (Sept. 2022), pp. 62-76. 1ssN: 2075-2180. por: 10.4204/
EPTCS.371.5. arXiv: 2209.14035[cs].

154

(5]

(6]
(7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

Mehdi Dastani et al. ‘‘Programming Cognitive Agents in Defeasible Logic’’. In:
12th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (Montego Bay, Jamaica, Dec. 2-6, 2005). Ed. by Geoff Sutcliffe
and Andrei Voronkov. Vol. 3835. LNAI. Heidelberg: Springer, 2005, pp. 621-
636. por: 10.1007/11591191_ 43.

Guido Governatori. ‘‘An ASP Implementation of Defeasible Deontic Logic’’. In:
Kiinstliche Intell. 38.1-2 (2024), pp. 79-88. por: 10.1007/s13218-024-00854-9.
Guido Governatori. ‘“Weak Permission is not Well-Founded, Grounded and Sta-
ble’”. In: CoRR abs/2411.10624 (2024). por: 10.48550 / ARXIV.2411.10624.
arXiv: 2411.10624 [cs.LO].

Guido Governatori and Antonino Rotolo. ‘‘BIO Logical Agents: Norms, Beliefs,
Intentions in Defeasible Logic’’. In: Journal of Autonomous Agents and Multi
Agent Systems 17.1 (2008), pp. 36—69. por: 10.1007/s10458-008-9030-4.
Guido Governatori and Antonino Rotolo. ‘‘Defeasible Logic: Agency, Intention
and Obligation. Deontic Logic in Computer Science’’. In: 7th International Work-
shop on Deontic Logic in Computer Science. Ed. by Alessio Lomuscio and Don-
ald Nute. LNAI 3065. Berlin: Springer, 2004, pp. 114-128. por: 10.1007 /978-3-
540-25927-5_8.

Guido Governatori et al. ‘“The Rational behind the Concept of Goal’’. In: Theory
and Practice of Logic Programming 16.3 (2016), pp. 296-324. por: 10.1017/
S1471068416000053.

Christian Hatschka, Agata Ciabattoni, and Thomas Eiter. ‘‘Deontic Paradoxes in
ASP with Weak Constraints’’. In: Proceedings 39th International Conference on
Logic Programming, ICLP 2023, Imperial College London, UK, 9th July 2023 -
15th July 2023. Ed. by Enrico Pontelli et al. Vol. 385. EPTCS. 2023, pp. 367-380.
por: 10.4204/EPTCS.385.39.

Suraj Kothawade et al. ‘‘AUTO-DISCERN: Autonomous Driving Using Com-
mon Sense Reasoning’’. In: International Conference on Logic Programming
2021 Workshops. Ed. by Joaquin Arias et al. Vol. 2970. CEUR Workshop Pro-
ceedings. Porto, Portugal (virtual): CEUR, Sept. 2021.

Ho-Pun Lam and Guido Governatori. ‘‘“The Making of SPINdle’’. In: Inferna-
tional Symposium on Rule Interchange and Applications (Las Vegas, Nevada,
USA, Nov. 5-7,2009). Ed. by Guido Governatori, John Hall, and Adrian Paschke.
LNCS 5858. Heidelberg: Springer, 2009, pp. 315-322. por: 10.1007/978-3-642-
04985-9_ 29. eprint: papers/2009/ruleml09spindle.pdf.

Ho-Pun Lam and Guido Governatori. ‘“Towards a Model of UAVs Navigation in
Urban Canyon through Defeasible Logic’’. In: Journal of Logic and Computation
23.2 (2013), pp. 373-395. por: 10.1093/logcom /exr028.

Ronald E. Leenes and Federica Lucivero. ‘‘Laws on Robots, Laws by Robots,
Laws in Robots: Regulating Robot Behaviour by Design’’. In: Law, Innovation
and Technology 6(2).2546759 (Nov. 2014).

Jiaxin Lin et al. ‘‘Road Traffic Law Adaptive Decision-making for Self-Driving
Vehicles’’. In: 2022 IEEE 25th International Conference on Intelligent Trans-
portation Systems (ITSC). 2022 IEEE 25th International Conference on Intel-

155

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]
(27]

(28]

ligent Transportation Systems (ITSC). 2022, pp. 2034-2041. por: 10.1109 /
ITSC55140.2022.9922208.

Sebastian Maierhofer, Paul Moosbrugger, and Matthias Althoff. ‘‘Formalization
of Intersection Traffic Rules in Temporal Logic’’. In: 2022 IEEE Intelligent Ve-
hicles Symposium (IV). 2022 1IEEE Intelligent Vehicles Symposium (IV). June
2022, pp. 1135-1144. por: 10.1109/1V51971.2022.9827153.

Kumar Manas and Adrian Paschke. ‘‘Knowledge Integration Strategies in Au-
tonomous Vehicle Prediction and Planning: A Comprehensive Survey’’. In: CoRR
abs/2502.10477 (2025). por: 10.48550 / ARXIV .2502.10477. arXiv: 2502.
10477.

L. Thorne McCarty. ‘‘Artificial Intelligence and Law: How to Get There from
Here”’. In: Ratio Juris 3 (1990), pp. 189-200.

Emery Neufeld et al. ‘‘Enforcing Ethical Goals over Reinforcement-Learning
Policies’”. In: Ethics and Information Technology 24 (2022). por: 10.1007 /
s10676-022-09665-8.

Sofia Panagiotidi, Sergio Alvarez-Napagao, and Javier Vizquez-Salceda. “To-
wards the Norm-Aware Agent: Bridging the Gap Between Deontic Specifications
and Practical Mechanisms for Norm Monitoring and Norm-Aware Planning’’. In:
Coordination, Organizations, Institutions, and Norms in Agent Systems IX - COIN
2013 International Workshops, COIN@AAMAS, St. Paul, MN, USA, May 6, 2013,
COIN@PRIMA, Dunedin, New Zealand, December 3, 2013, Revised Selected Pa-
pers. Ed. by Tina Balke et al. Vol. 8386. Lecture Notes in Computer Science.
Springer, 2013, pp. 346-363. por: 10.1007/978-3-319-07314-9_ 19.

Sofia Panagiotidi and Javier Vazquez-Salceda. ‘‘Towards Practical Normative
Agents: A Framework and an Implementation for Norm-Aware Planning’’. In:
Coordination, Organizations, Institutions, and Norms in Agent System VII, COIN
2011 International Workshops, COIN@QRAAMAS 2011, Taipei, Taiwan, May 3,
2011, COIN@WI-IAT 2011, Lyon, France, August 22, 2011, Revised Selected
Papers. Ed. by Stephen Cranefield et al. Lecture Notes in Computer Science.
Springer, 2011, pp. 93-109. por: 10.1007/978-3-642-35545-5_ 6.

Henry Prakken. ‘‘On the problem of making autonomous vehicles conform to
traffic law’’. In: Artif. Intell. Law 25.3 (2017), pp. 341-363.

Astrid Rakow and Maike Schwammberger. ‘‘Brake or Drive: On the Relation Be-
tween Morality and Traffic Rules when Driving Autonomously’’. de. In: Software
Engineering 2023 Workshops. 2023, p. 104. por: 10.18420/se2023-ws-12.
Galileo Sartor et al. ‘“Mind the Gap - The Rules of the Road for Humans and Ma-
chines’’. In: Proceedings of the 18th International Workshop on Juris-Informatics
(JURISIN 2024). May 2024, pp. 55-70. 1sBN: 978-4-915905-96-4.

D. A. Schlobohm and D. A. Waterman. ‘‘Explanation for an Expert System that
Performs Estate Planning’’. In: ICAIL-1987. ACM, 1987, pp. 18-27.

Tran Cao Son et al. ‘‘Answer Set Planning: A Survey’’. In: Theory Pract. Log.
Program. 23.1 (2023), pp. 226-298. por: 10.1017/S1471068422000072.

Hui Wei et al. ‘‘PlanGenLLMs: A Modern Survey of LLM Planning Capabili-
ties””. In: CoRR abs/2502.11221 (2025). por: 10.48550/ ARXIV.2502.11221.
arXiv: 2502.11221.

156

Towards Translating Natural Language
Normative Text into a Digital Twin of
Administrative Law

Florian Schnitzhofer[0009—0005-3338—0366] 5,
Christoph G. Schuetz[0000—0002-0955—8647]

Institute of Business Informatics — Data & Knowledge Engineering, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
{schnitzhofer,schuetz}@dke.uni-linz.ac.at
https://www.dke.uni-linz.ac.at/

Abstract. Automating public-sector decision-making promises efficiency
gains in administration. This short paper proposes a research agenda for
translating natural-language normative text into a Digital Twin of Ad-
ministrative Law (DTAL), which we envision as a layered, executable
representation of statutes that preserves traceability to the authoritative
legal text while enabling accountable automation of decision-making in
the public sector. To obtain a DTAL from normative text, a stepwise
translation pipeline must be followed, which we demonstrated on the Up-
per Austrian Tourism Contribution Levy Act. The resulting DTAL yields
deterministic and explainable outcomes. In this short paper, we out-
line open questions on standardizing legal ontologies, integrating LLMs
as assistant tools, and embedding DTALs into public-sector engineering
practices to realize transparent auditable automation of decision-making
aligned with the rule of law.

Keywords: Legal ontologies - law as code - digital twin of legislation -
automated decision-making - administrative law

1 Introduction

Public administrations explore the use of automated decision-making (ADM)
to improve the efliciency and consistency of tasks in areas such as taxation,
social welfare, licensing, and law enforcement. However, algorithmic decisions
raise rule-of-law concerns: Transparency, due process, and accountability can
be compromised if systems are opaque or inconsistently implemented. To align
ADM with the required legal guaranties, systems must be explainable, auditable,
and grounded in law [2].

In practice, government agencies and software vendors often re-code portions
of legislation on a case-by-case basis into software for supporting administra-
tive tasks. However, rather than relying on ad-hoc software implementations,
we propose translating administrative laws into structured, executable repre-
sentations [5]—essentially a Digital Twin of Law. A Digital Twin of Law is a

157

https://www.dke.uni-linz.ac.at/

synchronized digital counterpart of a legal text: Whenever the law is updated,
the digital twin is updated accordingly, and can be used to automate decisions
or provide explanations in a legally faithful manner.

This short paper, building on our previous work [12] that introduces the
concept of a Digital Twin for Administrative Law (DTAL), focuses on the trans-
lation process from natural-language normative text to formalized DTAL repre-
sentation. In this regard, a central research question is the following: How can
natural-language normative text be systematically translated into a Digital Twin
of Administrative Law to support accountable automated decision-making? We
already identified necessary steps in a pipeline for transforming legislative text
into a DTAL, derived from iterative design cycles, a grounded-theory analysis
of expert insights, and a literature review. We already conducted a first demon-
stration of the approach using the Upper Austrian Tourism Contribution Levy
Act as a use case, highlighting how the proposed pipeline works in practice.
Nevertheless, key design decisions regarding the proposed pipeline remain open.
In this paper, we describe some of these open decisions and propose next steps
for research towards a systematic translation pipeline for building a DTAL from
natural-language normative text.

The remainder of this paper is structured as follows. Section [2] describes
relevant background on the legal formalization process and digital twins. Sec-
tion[3loutlines the proposed research methodology based on the echeloned Design
Science Research framework. Section [4] presents the DTAL translation pipeline,
describes the tourism contribution levy use case and reports our research agenda.
Section [5] concludes the paper.

2 Background

Encoding legal rules in machine-executable form has a long tradition in the Af
and Law research community. Multiple streams of research inform our approach.
Early systems formalized statutes and regulations as logical rules to derive trans-
parent outcomes [§]. Satoh et al. have explored the translation of complex legal
theories into Prolog code to build the PROLEG legal reasoning system [9]. More
recently, researchers have been investigating how large language models (LLMs)
can assist in the formalization process [I5JI0/4]. Legal ontologies capture core
entities, relations, and constraints, providing semantic clarity and allowing for
reuse across applications [14].

The concept of digital twin, established in engineering as a synchronized vir-
tual counterpart of a real-world physical system [3], can be adapted to legislation
to keep computable models aligned with promulgated texts [5]. For administra-
tive law, which is often formulaic and data-driven, we adapt the digital-twin con-
cept through a layered architecture of a Digital Twin of Administrative Law [12].
The combination of existing but distinct approaches (such as law-as-code [9],
computable legislation [8[I], ontologies [I4], and parameterization [5]), together
with a systematic investigation of the translation process itself, constitutes the
path we seek to investigate further.

158

3 Research Methodology

To develop our translation approach, our research follows the echeloned Design
Science Research (eDSR) framework [I3] to iteratively develop and evaluate the
DTAL translation pipeline. Therefore, our research project is structured into
multiple build-and-evaluate cycles (design echelons) to manage the complexity
of translating legal texts into code. We first identified the problem and research
objectives through literature review and exploratory interviews with domain
experts, including legislative drafters, legal practitioners, and e-government spe-
cialists. Literature and interviews confirmed the need for automation of trans-
lation that remains faithful to the law, which then led to a formulation of key
requirements for the DTAL construction process: Partial transformation of func-
tionality, semantic accuracy, adapting drafting process to support ADM, and
adaptability to legal changes.

Using these requirements, we designed an initial DTAL architecture and
translation pipeline, which we prototyped for a specific use case: the Upper Aus-
trian Tourism Contribution Levy. Through an iterative build-evaluate process,
we converged on a generalized DTAL translation pipeline and a reference archi-
tecture, which we present in the next section.

4 From Normative Text to a Digital Twin

In this section, we describe a step-wise pipeline for translating natural-language
law into a Digital Twin of Administrative Law. We first describe the general
DTAL architecture that underpins the proposed approach. We then walk through
the steps of the translation pipeline, from selecting the legal scope to evaluating
the obtained DTAL.

4.1 Structure of a Digital Twin for Administrative Law

A core premise of our approach is to preserve a tight coupling between the legal
text and the executable model. To this end, we structure the DTAL into the
following four linked layers.

1. Statutory text: The promulgated wording remains the authoritative source,
and all artifacts reference the source for provenance.

2. Ontology: The ontology serves as a shared vocabulary of legal concepts and
relations, disambiguating terms and anchoring inputs/outputs of rules.

3. Configuration: Jurisdiction-specific parameters (e.g., rates, thresholds, cat-
egorical thresholds, lists of qualifying entities, and references to external
standards) are maintained as data, enabling non-invasive updates.

4. Executable logic: Deterministic rules implement applicability, calculations,
and decisions, returning decisions and computation results as well as expla-
nations (logging of decision parameter and calculation pathways) tracing
back to the legal sources.

159

| for Each Functionality

Analyze Law and Slice Law into DTAL
Delimit Scope |:> | [Objectstrom

Evaluate

Extract Define Interfaces |
xract ! * Implement Logic Correcthass of |

Extract Ontology

for in from Normative
Items from the Configuration - DTAL per
Normative Text Model Functionali

Functionalities

| Normative Text

Fig. 1. Administrative law to DTAL pipeline steps

The logic consumes ontology terms and configuration values, while every rule

cites the originating provisions. Exposed via a simple API and the Model Context
Protocol (MCP), the DTAL becomes a runtime service that LLM-based agents
can query for reproducible, computation-supporting, explainable, and auditable
ADM without completely replacing human judgment for some decisions.

4.2

Translation Pipeline

Given the above architecture, we propose an iterative pipeline for translating a
natural-language normative text into a DTAL, which is illustrated in Fig. [1} In
the following, we briefly describe the steps of the translation pipeline.

1.

Analyze Law and Delimit Scope. We begin by selecting the target nor-
mative text and determining which parts of the text are in scope for automa-
tion. An ongoing grounded-theory study with expert interviews shows that
often, normative texts in administrative law contain some sections that are
well-suited to automation and others that are not.

Slice Law into DTAL Functionalities. Next, we decompose the law’s
in-scope portions into discrete functional modules. Each functionality cor-
responds to a coherent decision[I1] or computation that the law requires.
Each functionality will be implemented and evaluated end-to-end, enabling
modular development and targeted review.

Extract Ontology Objects from Normative Text. We identify and
name the core legal concepts, roles, and relations that recur in the text (e.g.,
ContributionRate, Municipality, LevyRate) to create the ontology layer,
capture them in a formal ontology (e.g., OWL class/property schema) with
subclass hierarchies, and formulate constraints to disambiguate terms and
standardize inputs/outputs across functionalities. To explore the possibility
of the reuse of standardized legal ontologies, we currently conduct a system-
atic literature review following the mapping-study methodology proposed by
Oliveira Rodrigues et al. [7], covering the period of 2017-2025.

Extract Configuration Items from Normative Text. We scan the law
for any explicit values, external references, or parameters that should be
treated as configuration items. We store configuration items in a separate
configuration layer so that policy changes (e.g., updating a rate or threshold)
are data updates rather than logic or ontology changes, preserving stability
of the executable rules and the ontology model.

Define Interfaces for Each Functionality in the Configuration Model.
For each digitally provided functionality we specify the external interface,

160

i.e., its required inputs, outputs, and validation constraints, as part of the
configuration layer. This API-centric approach aligns the design with the
principle of service-oriented architecture, i.e., each legal function can be seen
as a microservice accessible via an APT call.

6. Implement Logic from Normative Text. In the logic layer, we translate
operative provisions, i.e., conditions, obligations, calculations, and decision
rules, into executable, deterministic program code. For our use case, we used
a high-level programming approach (Python), emphasizing readability and
auditability in line with Better Rules principles [I]. For this current study,
we conducted the extraction of the information from the natural language
text manually even though this remains costly. The work by Zin et al. [15]
and colleagues addresses data scarcity in legal information extraction with
modern methods. LLMs can assist in moving from text to intermediate struc-
tures when coupled with retrieval or expert curation [I0/4]. Future work will
adopt a conservative stance: LLMs support drafting and hypothesis genera-
tion, while validation remains formal and/or expert-driven.

7. Evaluate Correctness of DTAL per Functionality. Once a function-
ality is implemented, it must be rigorously evaluated before it can be con-
sidered a faithful digital twin of the law. Whether this evaluation should
be done via expert peer review, formal proofs, or extensive simulation (or a
combination) is an open area for exploration. For this study we performed
verification using scenario-based testing with expert-provided ground truth.

Executing these stages yields a layered DTAL (text, ontology, configuration,
logic) whose rules cite their legal sources and whose parameters are externally
governed. The steps are repeatable whenever the law changes (keeping the digital
twin current) and transferable across statutes, enabling a growing repository of
reusable, auditable legal models.

4.3 Use Case: Upper Austrian Tourism Contribution Levy

To demonstrate the proposed approach, we applied the DTAL translation pipeline
to a real statute—the Upper Austrian Tourism Act 2018 [6]—focusing on the
provision on the tourism contribution levy. This law is a suitable case study be-
cause it combines numeric calculations (the levy formula) with categorical rules
(exemptions and applicability conditions), mirroring common ADM scenarios.
Following our approach, we restricted the scope to the calculation of the tax,
mapped key definitions and cross-references into the ontology and configuration
layers, and manually implemented the logic of the law, i.e., applicability condi-
tions, exemptions, and rate calculations, as Python functions, annotated with
links to the corresponding legal provisions.

For testing the correctness and robustness, we assembled 100 realistic test
scenarios reflecting diverse cases with different types of businesses, revenue levels,
and municipalities. Each scenario’s expected outcome was determined as ground
truth by a legal tax expert. We then queried the DTAL service via its API for

161

each scenario and compared the results to the ground truth. The DTAL produced
correct and consistent outcomes across all scenarios for this use casdl

In contrast, a state-of-the-art LLM—we used GPT-5 Pro with deep search
as an example—given the same task showed mixed performance. The LLM’s
answers were incomplete or incorrect on several edge cases and its outputs varied
across multiple runs of the same query, indicating a lack of determinism. For
example, the LLM often overlooked a specific exemption for certain business
types. While the LLM produced executable code, the method of producing the
code only allowed for weak traceability between the underlying legal norms and
the generated implementation.

Throughout the work on the use case, we encountered several unresolved
design decisions that highlight opportunities for future research. One opportunity
relates to the question of how to design and conduct the evaluation process of
the DTAL. Another open question is which legal ontology format should be
adopted and whether it ought to be standardized. Although the case study is a
relatively formulaic tax law, future work should apply the DTAL pipeline to other
types of administrative law, including those with more textual or discretionary
provisions, to evaluate the generalizability of the DTAL concept. We anticipate
that certain legal norms, e.g., open-textured concepts or broad discretionary
clauses, may not fully translate into code. Identifying how to handle such cases,
e.g., via human-in-the-loop or hybrid approaches, and ensuring traceability of
the decision-making process within the DTAL is an important area for further
research. Finally, the application of LLMs to extract information from natural
language law and therefore semi-automate this pipeline will also be an important
focus of future work.

5 Conclusion

In this work, we presented an approach for bridging the gap between natu-
ral language normative text and automated decision-making systems through
the concept of a Digital Twin of Administrative Law. We developed a layered
DTAL architecture and an accompanying methodology to systematically trans-
late normative legal content into a formal, executable model. We demonstrated
the approach on a practical use case and showed that the resulting DTAL out-
performs a purely LLM-based approach in terms of accuracy, consistency, and
explainabilityﬂ

By continuing to refine the proposed approach and embedding it in real-world
legislative and administrative processes, we move closer to a future where digital
government systems are as trustworthy and understandable as the legal texts
that govern them.

! Scenario testing results are available online: https://doi.org/10.5281 /zenodo.17571983!
2 The DTAL use case implementation is open source: https://github.com/
FlorianSchnitzhofer/digital-twins-administrative-law-tourism-levy.

162

https://doi.org/10.5281/zenodo.17571983
https://github.com/FlorianSchnitzhofer/digital-twins-administrative-law-tourism-levy
https://github.com/FlorianSchnitzhofer/digital-twins-administrative-law-tourism-levy

References

10.

11.

12.

13.

14.

15.

Barraclough, T., Fraser, H., Barnes, C.: Legislation as code for New Zealand. Re-
port: https://nzlii.org/nz/journals/NZLFRRp/2021/3.pdf (2021)

. European Union: Regulation (eu) 2024/1689 of 13 june 2024 laying down har-

monised rules on artificial intelligence (artificial intelligence act). Official Journal
of the European Union, L Series (12 July 2024). ELL: |http://data.europa.eu/
eli/reg/2024/1689/0j (2024)

. Grieves, M.: Digital twin: Manufacturing excellence through virtual factory repli-

cation. Tech. rep., Florida Institute of Technology (2014), White Paper

Janatian, S., Westermann, H., Tan, J., Savelka, J., Benyekhlef, K.: From Text to
Structure: Using Large Language Models to Support the Development of Legal
Expert Systems, pp. 167-176. I0S Press (12 2023). https://doi.org/10.3233/
FATA230962

Lamprecht, A.: Digital twins of law: Embracing complexity. In: Law
for Professionals, pp. 115-135. Springer (2025). https://doi.org/10.1007/
978-3-031-78596-2_6

Land Oberésterreich: O6. Tourismusgesetz 2018 (LGBL Nr. 3/2018). https:
//www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Lr00&Gesetzesnummer=
20000953 (2018), retrieved Feb 1, 2025

de Oliveira Rodrigues, C.M., de Freitas, F.L.G., Barreiros, E.F.S., de Azevedo,
R.R., de Almeida Filho, A.T.: Legal ontologies over time: A systematic mapping
study. Expert Systems with Applications 130, 12-30 (2019). https://doi.org/
https://doi.org/10.1016/j.eswa.2019.04.009

Prakken, H., Sartor, G.: Logical models of legal argumentation. In: Legal Knowl-
edge Based Systems: JURIX 1997, pp. 23-33. IOS Press (1997)

Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shi-
rakawa, K., Takano, C.: PROLEG: An implementation of the presupposed ultimate
fact theory of japanese civil code by PROLOG technology. In: Onada, T, Bekki, D.,
McCready, E. (eds.) New Frontiers in Artificial Intelligence. pp. 153-164. Springer
(2011). https://doi.org/10.1007/978-3-642-25655-4_14

Savelka, J., Ashley, K.D., Gray, M.A., Westermann, H., Xu, H.: Explaining le-
gal concepts with augmented large language models (GPT-4). arXiv:2306.09525
(2023). https://doi.org/10.48550/arXiv.2306.09525

Schnitzhofer, F., Pils, P., Seper-Ambros, P.: Der selbstfahrende Staat. Springer
Gabler (2024)

Schnitzhofer, F., Schiitz, C.: Towards a scalable architecture for legal-ontologies in-
tegrated into digital twins of administrative law. In: SEMANTICS 2025 Developers
Workshop (2025), https://ceur-ws.org/Vol-4064/SEMDEV-paper5.pdf
Tuunanen, T., Winter, R., vom Brocke, J.: Dealing with complexity in design
science research: A methodology using design echelons. MIS Quarterly 48(2), 427
458 (2024). https://doi.org/10.25300/MISQ/2023/16700

Valente, A.: Types and roles of legal ontologies. In: Law and the Semantic Web:
Legal ontologies, methodologies, legal information retrieval, and applications, pp.
65-76. Springer (2005). https://doi.org/10.1007/978-3-540-32253-5_5

Zin, M.M., Nguyen, H.T., Satoh, K., Nishino, F.: Addressing annotated data
scarcity in legal information extraction. In: Suzumura, T., Bono, M. (eds.) New
Frontiers in Artificial Intelligence. pp. 77-92. Springer (2024). https://doi.org/
10.1007/978-981-97-3076-6_6

163

https://nzlii.org/nz/journals/NZLFRRp/2021/3.pdf
http://data.europa.eu/eli/reg/2024/1689/oj
http://data.europa.eu/eli/reg/2024/1689/oj
https://doi.org/10.3233/FAIA230962
https://doi.org/10.3233/FAIA230962
https://doi.org/10.3233/FAIA230962
https://doi.org/10.3233/FAIA230962
https://doi.org/10.1007/978-3-031-78596-2_6
https://doi.org/10.1007/978-3-031-78596-2_6
https://doi.org/10.1007/978-3-031-78596-2_6
https://doi.org/10.1007/978-3-031-78596-2_6
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrOO&Gesetzesnummer=20000953
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrOO&Gesetzesnummer=20000953
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=LrOO&Gesetzesnummer=20000953
https://doi.org/https://doi.org/10.1016/j.eswa.2019.04.009
https://doi.org/https://doi.org/10.1016/j.eswa.2019.04.009
https://doi.org/https://doi.org/10.1016/j.eswa.2019.04.009
https://doi.org/https://doi.org/10.1016/j.eswa.2019.04.009
https://doi.org/10.1007/978-3-642-25655-4_14
https://doi.org/10.1007/978-3-642-25655-4_14
https://doi.org/10.48550/arXiv.2306.09525
https://doi.org/10.48550/arXiv.2306.09525
https://ceur-ws.org/Vol-4064/SEMDEV-paper5.pdf
https://doi.org/10.25300/MISQ/2023/16700
https://doi.org/10.25300/MISQ/2023/16700
https://doi.org/10.1007/978-3-540-32253-5_5
https://doi.org/10.1007/978-3-540-32253-5_5
https://doi.org/10.1007/978-981-97-3076-6_6
https://doi.org/10.1007/978-981-97-3076-6_6
https://doi.org/10.1007/978-981-97-3076-6_6
https://doi.org/10.1007/978-981-97-3076-6_6

Testing Modelling Fitness of Normative
Specification Languages for LLMs

Giovanni Sileno' and Andrea Marino!
Informatics Institute, University of Amsterdam, The Netherlands
{g.sileno, a.marino}@uva.nl

Abstract. Several works propose to leverage LLMs to facilitate the
translation from natural language into formal notations. The number of
distinct formal notations proposed in the literature for normative spec-
ifications calls for dedicated comparative evaluations. In this paper, we
elaborate on the notion of “modelling fitness” as a way to assess a given
notation, which depends on the modeller’s interpretation capacity and
proficiency with the notation. We draft a methodology to experimentally
test dimensions of modelling fitness for LLMs, introducing a “mirroring”
pipeline for notations centred primarily on informational models, and
reporting the results of preliminary experiments.

Keywords: Normative specifications - Representation of Norms - Mod-
elling fitness - LLMs - Natural language - Formal notations

1 Problem setting

The number of domain-specific languages (DSLs), programming languages, and
informational models for normative specifications continues to grow in the lit-
erature.! Comparing these proposals, and, even more, formally evaluating their
expressivity, is a challenging task.? Yet, all these solutions share a fundamental
common ground: normative requirements originate from human sources and as
such they are initially formulated in natural language.

With the rise of initiatives aimed at integrating normative specifications into
LLM-enhanced modelling pipelines, a significant, complementary question has to
be addressed: Which formal notation provides the most appropriate mapping for
natural language sources? For this aim, we introduce the notion of “modelling
fitness”. Modelling fitness describes the accessibility of a notation for a given
modelling task, assessed relatively to the conceptual model held by the modeller
(intertwining lexical, syntactic and semantic dimensions). Operationalizing mod-
elling fitness for humans is difficult because its expression heavily depends on

! Focusing only on norm/contract representation frameworks with a stronger com-
putational orientation represented in the last decade, we have: Defeasible Deontic
Logic/SPINdle [11, 7], LegalRuleML [16, 12], NPL/NPL(s) [8, 25], PROLEG [19], In-
stAL [15], ODRL [9, 5], Symboleo [20], FLINT /eFLINT [23, 22|, Logical English [10],
Catala [13], Blawx [14], Stipula [4], and DCPL [21].

2 For a wider socio-technical view see [1], in the main JURIX conference.

164

the modeller’s background. Consider an analogy with programming languages: a
Java programmer finds Scala or Kotlin much more familiar than Rust, while a C
programmer experiences the opposite.? Similarly, an Italian speaker would find
French easier to learn than Dutch, but the reverse would be true for a German
speaker. Extending these examples from language learning to modelling tasks,
we find t hat modelling fitness primarily de pends on two components:

(i) the capacity of forming a correct interpretation of the scenario at stake, re-
lying on the modeller’s natural language proficiency and domain knowledge;

(ii) the proficiency with the modelling notation, depending on how easily the
notation can be leveraged by the modeller’s existing conceptual resources.

In the case of LLMs performing the modelling task, their “conceptual model”
results from the texts used training texts. We formed a few working hypotheses
of the performance of LLMs with respect to modelling fitness. The model’s in-
terpretation accuracy is highest for common scenarios (i). The accuracy of the
output in the target modelling notation is enhanced if the formal language (ii-a)
and its transportation layer (ii-b) are more commonly present in the training
data, and if the notation allows for a more direct mapping from word to concept
(ii-c). The present paper does not aim to provide exhaustive benchmarking, nor
to validate these hypotheses. Instead, its purpose is to draft a methodology for
starting testing them and to offer a reflection on an initial experimental iteration.

2 Methodology

Assessing a translation The most common way in the literature (see e.g. [17])
to assess the accuracy of a translation from natural to formal language (or sym-
bolic specifications broadly) is through question-answering (Q/A) relative to a
given scenario (S). In what we will call the reasoning pipeline, both the ques-
tion (Q) and the scenario (S) must first be translated into a formally equivalent
specification. A reasoning engine or solver then provides the final answer (A).
The simplest type of questions are those that require a Yes or No answer. For
LLM-enhanced modelling processes, directly querying the LLM with the ques-
tion (Q) establishes a baseline performance against which to measure whether
the symbolic pipeline actually improves accuracy. Note that a self-refinement
step may be necessary to correct syntactic errors that would prevent execution.

Since some of the target notations we are considering are primarily informa-
tional models (e.g. ODRL [9, 5], DCPL [21]), they cannot be directly connected
to a reasoning engine. Consequently, these notations cannot be used with a rea-
soning pipeline. We introduced therefore an alternative method, inspired by the
auto-encoder architecture, that we will call the mirroring pipeline (Fig. 1).
This pipeline involves translating the natural language for S and Q into a formal
specification, and subsequently translating it back to natural language. The core

3 Since these are general-purpose languages, they can still create functionally equiva-
lent programs; therefore, the issue here is not expressiveness in absolute terms.

165

mirrored
source (MS)

A,
$'in
LLM LLM
encoder | fwm?' decoder
notation

notation

X translation translation i
i fo FL T to NL I
N 1
| ' evaluation I
N I
|

I 1
N 1
! MS'in i
| #| formal 1
N 1
. I
N I
|

evaluation

Fig. 1. The “mirroring” experimental pipeline, evaluating the system both on natural
and formal language artefacts, by reconstructing the original source.

test is whether the initial and final natural linguistic artefacts maintain semantic
equivalence, indicating that no significant informational loss occurred during the
process. However, because the textual output may be different from the initial
source, an additional step is needed to further automate the semantic equivalence
test. A traditional way is to use some technique based on sentence embeddings;
yet, the selection of proper embeddings adds complexity. A complementary way
is to pass the mirrored text through the translation process again. The more the
formal notation acts as a normalized representation, the more we should expect
the formal representation to be equivalent, if the translation step is correct.

Translating via LLMs In both “reasoning* and “mirroring* pipelines, we need
to settle upon a reproducible method for prompting the LLMs to perform the
translation step from natural to formal language. However, as some of the target
notations may not be present in the training dataset used to build the LLM, it
is necessary to provide adequate relevant information about the notation syntax
and semantics in the prompt. The syntax of DSLs and formal notations is gen-
erally described by BNF specifications, whereas the structure of informational
models and knowledge-centred representational artifacts is described through
frames, schemas, or ontologies. Some contribution may have both. These inputs
are given to the LLM with the prompt. Note that the lexical choice of keywords
of the language, as well as the transportation form (XML, JSON, RDF, ...)
may influence the response of the LLM. Furthermore, to expose the LLMs to
the notation semantics, we consider including representative examples (few-shot
learning), possibly formal axioms, or plain-text descriptions of the language’s
core concepts and relationships directly within the prompt’s context. A pri-
ori, it is unclear which of these components may play a more relevant role in
improving the translation performance. We hypothesize that BNFs will likely
improve syntactic forms of alignment [24], whereas use cases of the target lan-
guage with their explanation in natural language will likely improve semantic
alignment. Knowledge-centred notations, if expressed in commonly used means
such as JSON, would likely already improve with just the examples.

166

3 Experimental setup

Testbench For our longer term experiments, we aim to collect a wide range
of scenarios relevant for normative reasoning. These scenarios need to be cho-
sen for plausibility (scenarios informed by statutory law, private law, contracts,
agreements, technical regulations, and technical policies, including access and
usage control), as well as for specificity (normative primitives and minimalistic
compositions). Instances for the second group will be selected from literature on
normative systems, as well as by generating a synthetic dataset.

Selection of target notations Before proceeding into the benchmarking, tar-
get languages for normative specifications need to be scrutinized. By examining
academic and technical documentation, we will look for several different ele-
ments: (i) (for the reasoning pipeline) a reasoning engine that allows querying;
(ii) formal specifications of the language (such as BNF grammars, schemas); (iii)
relevant examples for few-shot learning; (iv) (optional) additional information
such as formal axioms or plain-text descriptions which may improve semantic
alignment. These elements should be maintained in a public repository to ensure
reproducibility and allow for iterative improvements.

Evaluation The reasoning pipeline greatly simplifies t he e valuation by center-
ing on Yes/No questions; however, more complex questions can also be imag-
ined. The mirroring pipeline evaluation involves instead two natural language
texts (the source scenario and the reconstructed scenario) and two formal no-
tation texts (the encodings of the above, generated independently by the same
LLM module). Natural language texts can be compared using text-edit distances
(Hamming, Levenshtein) or by comparing their embeddings, applying language
models dedicated to this task. Formal language texts, however, allow for more
structured comparisons. Several proposals exist for instance for schema/ontology
alignment and matching (e.g. [2]). These methods typically rely on a mixture
of methods (e.g. [6]), including graph-based embeddings (e.g. [3]) constructed
on training data independent of the target language. However, their opacity
makes them a suboptimal choice to identifying where the translation fails. On
the opposite end of the spectrum, there exists methods to compare programs by
means of abstract syntactic trees (ASTs), although these may be vulnerable to
functional equivalence of distinct language compositions. As in these preliminary
experiments we focus simple normative directives, this should be less relevant.

To simplify, let us assume the symbolic output is a list of associative arrays
or key-value mappings (which may be nested, similarly to Python dictionaries),
resulting in a JSON-like computational object. Given two such outputs, four
comparison measures can be defined:

(a) matching: the number of dicts in the two lists that can be mutually matched
with an adequate score, normalized on the total number of elements;

(b) structural: the degree to which two dicts share the same keys, across the
overall structure;

167

(¢) type-matching: the degree to which two dicts share the same data type in
positions where they are structurally identical;

(d) content: the degree to which two dicts share the exact same content (values)
in positions where their value types are the same.

The product of these four measures provides a measure of deep equality.

Preliminary experiments For our first experiments, we have collected from
literature examples of normative primitives as the ones given in [18], education
material, and simple scenarios from online sources, summing up to 48 simple
scenarios. We will focus only on ODRL* and DCPL ®, both presented primarily
as informational models, and provided with a JSON-schema. Even if no dedicated
solver is available, we can still apply the mirroring pipeline.

To have a better picture of how the two languages perform in both en-
code/decode directions, we consider four different variations for an ablation
analysis: (i) the prompt contains the JSON schema of the target language; (ii)
the prompt uses a few-shot approach to provide examples of symbolic formula-
tion in the given language; (iii) the prompt contains both schemas and few-shot
examples; (iv) the prompt contains neither of the two (baseline). We generate
embeddings of both natural language texts and compare their semantic simi-
larity (using all-MinilM-L6-v2 from HuggingFace). The formal artefacts are
instead compared based on the measures (matching, structural, type-matching,
content) defined above. We performed the experiments on several models, both
remote (gpt-5-mini, gpt-4.1, gpt-4.1-mini) and local (gpt-oss). The code,
scenarios, prompts, output data, and scripts of analysis are available online.%

4 Preliminary results

In Table 1, we report the average performance of the different models when both
schemas and few-shot examples are provided in the input. Regarding the seman-
tic score, the performance of DCPL is consistent across the four models, whereas
ODRL shows a relevant drop with both gpt-oss and gpt5-mini. The opposite
trend occurs in the comparison of the symbolic artifacts: ODRL is rather con-
sistent in its performance, whereas DCPL exhibits both the best performance
(with gpt5-mini) and the worst performance (with gpt4.1-mini). This sug-
gests that modelling fitness does vary. In Table 2, we report the average increase
in gpt5-mini’s performance relative to the baseline (no additional input). This
increase is measured in the presence or absence of the schema of the notation
(as syntactic knowledge support) and few-shot examples (as semantic knowledge
support) in the prompt. Interestingly, for ODRL, any additional information de-
creases the semantic score. Exposure to the schema has a negative impact for
both ODRL and DCPL, although the few-shot examples balance it out in the

4 https://www.w3.org/TR/odrl-model/
® https://github.com/uva-cci/DCPLschema
5 https://github.com/uva-cci/nl12fr-2025-neurosymbolic

168

Model Language Semantic score (a) (b) (c) (d) a-b-c a-b-c-d

. DCPL 0.82 &+ 0.12 0.92 +£0.25 0.76 + 0.26 0.86 + 0.27 0.83 + 0.27 0.68 + 0.27 0.60 *+ 0.28
gpt5-mini .

ODRL 0.64 + 0.20 1.0 £+ 0.0 1.0 £+ 0.0 1.0 £ 0.0 0.49 £+ 0.35 1.0 £ 0.0 0.49 £ 0.35
4.1 DCPL 0.83 + 0.14 0.74 =044 0.62 £040 0.67£0.42 0.67 =042 0.56 & 0.38 0.50 £ 0.36
8pes ODRL 0.75 £ 0.17 097 £0.16 094 £0.18 097+£0.16 0.51 +0.29 0.94+0.18 049+ 0.29
4. 1-mini DCPL 0.78 &+ 0.13 0.53 £0.49 047 £0.43 0.50 4047 044 £0.44 0.41 £ 0.40 0.34 £+ 0.37
gpee ODRL 0.72 &+ 0.19 0.96 = 0.20 0.95+£0.20 0.96 +£0.20 0.44 +£0.24 0.95 £ 0.20 0.44 £+ 0.23
oss DCPL 0.81 = 0.14 0.69 = 045 0.63 £042 0.65£0.43 0.60 = 0.44 0.56 & 0.41 0.47 £ 0.38
&P ODRL 0.58 + 0.25 0.96 = 0.20 0.96 £0.20 0.96 +£0.20 0.36 = 0.29 0.96 & 0.20 0.36 &= 0.29

Table 1. Performance across different models on the mirroring experimental pipeline,
aggregated over the 48 scenarios using both schema/syntax and few-shot examples.
The semantic score is calculated between two natural language texts (S and MS in
Figure 1). The values a, b, ¢, d are ratios (defined respectively on matching items,
structure, type, and content—see Section 3) computed between two JSON artifacts (S’
and MS’ in Figure 1). The final column represents a measure of deep equality.

Syntax Few shot Semantic score (a) (b) (c) (d) a-b-c a-b-c-d
present absent -0.04 £ 0.11 0.22 +£0.54 0.23 + 0.44 0.24 £+ 0.52 0.30 *+ 0.47 0.25 + 0.41 0.30 + 0.35
absent present 0.05 + 0.10 -0.56 + 0.59 -0.43 £ 0.51 -0.49 + 0.57 -0.44 £0.53 -0.38 = 0.45 -0.30 & 0.40
present present 0.05 £ 0.09 0.23 £+ 0.50 0.22 + 0.42 0.23 £ 0.46 0.28 £ 0.44 0.20 £ 0.34 0.23 £ 0.30
present absent -0.20 + 0.16 0.08 £+ 0.34 0.13 £ 0.34 0.08 £+ 0.34 0.35 + 0.50 0.13 +£0.34 0.41 + 0.46
absent present -0.01 £ 0.19 0.10 + 0.30 0.14 £ 0.34 0.10 + 0.30 0.14 £ 0.40 0.14 £ 0.34 0.18 + 0.34
present present -0.06 + 0.18 0.10 + 0.30 0.16 + 0.34 0.10 + 0.30 0.27 £+ 0.48 0.16 + 0.34 0.32 + 0.40

Table 2. Performance change of gpt5-mini on the mirroring experimental pipeline for
different configurations (syntax and few-shot examples present or absent), compared
to the baseline of no added input. Data is aggregated across the 48 scenarios.

case of DCPL, and less so for ODRL. Conversely, looking at the comparison mea-
sures between the symbolic artifacts, we see an opposite trend, particularly for
DCPL. Exposure to syntax greatly improves the model’s performance, whereas
the presence of only few-shot examples greatly degrades it. The best deep equal-
ity scores for the two languages are found when only the schema is given in the
input. In short, our data suggests the existence of a trade-off between formal
consistency and domain coherence: best performance on deep equality coincides
with the worst performance on the semantic score, and vice-versa.

References

1. Ali; S., Sileno, G., Van Engers, T.: A systematic approach to assess languages
proposed for rules as code. JURIX 2025 (2025)

2. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with COMA++. ACM SIGMOD 2005 pp. 906-908 (2005)

3. Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Horrocks, I.:
OWL2Vec*: embedding of owl ontologies. Machine Learning 110(7) (2021)

4. Crafa, S., Laneve, C., Sartor, G.: Stipula: a domain specific language for legal
contracts. Workshop on Prog. Languages and the Law (ProLaLa 2022) (2022)

5. De Vos, M., Kirrane, S., Padget, J., Satoh, K.: ODRL policy modelling and com-
pliance checking. Int. Joint Conf. on Rules and Reasoning pp. 36-51 (2019)

6. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The
agreementmakerlight ontology matching system. OTM pp. 527-541 (2013)

169

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Governatori, G.: An asp implementation of defeasible deontic logic. KI - Kiinstliche
Intelligenz 38(1), 79-88 (Aug 2024)

Hiibner, J.F., Boissier, O., Bordini, R.H.: A normative programming language for
multi-agent organisations. Annals of Mathematics and AI 62(1), 27-53 (2011)
Iannella, R., Villata, S.: ODRL information model 2.2. W3C Recomm. (2018)

. Kowalski, R., Datoo, A.: Logical English meets legal English for swaps and deriva-

tives. Artificial Intelligence and Law pp. 1-35 (2021)

Lam, H.P., Governatori, G.: The making of spindle. Rule Interchange and Appli-
cations pp. 315-322 (2009)

Lam, H.P., Hashmi, M.: Enabling reasoning with LegalRuleML. Theory and Prac-
tice of Logic Programming 19(1), 1-26 (2019)

Merigoux, D., Chataing, N., Protzenko, J.: Catala: A programming language for
the law. Proc. ACM Program. Lang. 5(ICFP) (aug 2021)

Morris, J.: Blawx: Web-based user-friendly rules as code. Workshops co-located
with (ICLP 2022) 3193 (2022)

Padget, J., Elakehal, E.E., Li, T., Vos, M.D.: InstAL: An Institutional Action
Language, Law, Governance and Technology Series, vol. 30 (2016)

Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:
LegalRuleML: XML-based rules and norms. Rule-Based Modeling and Computing
on the Semantic Web pp. 298-312 (2011)

Pan, L., Albalak, A., Wang, X., Wang, W.: Logic-LM: Empowering large language
models with symbolic solvers for faithful logical reasoning. EMNLP 2023 pp. 3806—
3824 (2023)

Sartor, G.: Fundamental legal concepts: A formal and teleological characterisation.
Artificial Intelligence and Law 14(1), 101-142 (2006)

Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shi-
rakawa, K., Takano, C.: PROLEG: An implementation of the presupposed ultimate
fact theory of Japanese civil code by PROLOG technology. New Frontiers in Arti-
ficial Intelligence pp. 153-164 (2011)

Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopoulos, J.: Symboleo:
Towards a specification language for legal contracts. 2020 IEEE 28th Int. Require-
ments Engineering Conf. (RE) pp. 364-369 (2020)

Sileno, G., van Binsbergen, T., Pascucci, M., van Engers, T.: DPCL: a language
template for normative specifications. Workshop on Prog. Languages and the Law
(ProLaLa 2022) (2022)

Van Binsbergen, L.T., Liu, L.C., van Doesburg, R., van Engers, T.: eFLINT: a
domain-specific language for executable norm specifications. ACM SIGPLAN Gen-
erative Programming: Concepts and Experiences pp. 124-136 (2020)

Van Doesburg, R., Van Der Storm, T., Van Engers, T.: Calculemus: towards a
formal language for the interpretation of normative systems. AI4J 1, 73 (2016)
Wang, B., Wang, Z., Wang, X., Cao, Y., Saurous, R.A., Kim, Y.: Grammar prompt-
ing for domain-specific language generation with large language models (2023)
Yan, E., Nardin, L.G., Hiibner, J.F., Boissier, O.: An agent-centric perspective
on norm enforcement and sanctions. Coordination, Organizations, Institutions,
Norms, and Ethics for Governance of Multi-Agent Systems XVII pp. 79-99 (2025)

170

Author Index

A

Araszkiewicz, Michal
Asif, Muhammad

B

Bendovi, Klara
D

Dal Pont, Thiago Raulino

Drapal, Jakub
F
Francesconi, Enrico

Fungwacharakorn, Wachara

G

Goebel, Randy
Governatori, Guido
H

Huang, Sieh-Chuen
K

Khoshrou, Samaneh
Knap, Tomas
Kong, Yuntao
Kvapilikova, Ivana
L

Le Minh, Nguyen
Ludéascher, Bertram
M

Marino, Andrea

N

Nan, Harry
Nguyen, Ha Thanh
Nitta, Katsumi

P

Palmirani, Monica
Pisano, Giuseppe
Pour, Vojtech

R

Rotolo, Antonino
S

Sartor, Galileo
Sasdelli, Diogo
Satoh, Ken
Savelka, Jaromir
Schnitzhofer, Florian

116
14

105

130
105

130
1, 69, 116

116
144

83

55
105
116
105

116
97

164

55
116
69

14
144
105

144

130, 144
28

1, 69, 116
105

157

Schuetz, Christoph
Shao, Hsuan-Lei
Sileno, Giovanni
Steffes, Bianca
Steging, Cor

vV

van Leeuwen, Ludi
w

Wehnert, Sabine
Williams, Dexter
Wolswinkel, Johan
Wyner, Adam

X

Xue, Jieying

Z

Zbiegien, Tadeusz Jerzy
Zheng, Heng

Zin, May Myo

C

Cerny, Jan

157
83
164
28
42

42
116

97

55

130, 144
116

42

97

1, 69, 116

105

	1. CoverFinalUpdate
	2. inner Cover
	3. preface
	4. numberedPaperFinal
	10001
	10014
	10028
	10042
	When Legal Articles Resist Formalisation

	10055
	Legal NER: Evaluating the impact of LLM-Generated Annotations on NER Performance for Administrative Decisions

	10069
	Structured Four-Stage Legal Translation:

	10083
	A Rule-Based Method for the Annotation of Mandarin Medical Litigation Judgments Using Regular Expressions

	10097
	Using LLMs to Model Arguments in U.S. Supreme Court Briefs: Preliminary Report

	10105
	10116
	10130
	Using LLMs to Create Legal Ontologies for Traffic Rule Compliance

	10144
	10157
	Towards Translating Natural Language Normative Text into a Digital Twin of Administrative Law

	10164

	5. Author Index

